

Nil

1

1.1

1.2

1.2.1

1.2.2

1.3

1.4

1.5

1.5.1

1.5.2

1.5.2.1

1.5.2.2

1.5.2.3

1.5.2.4

1.5.2.5

1.5.2.6

1.5.2.7

1.5.2.8

1.5.2.9

1.5.2.10

1.5.2.11

1.5.2.12

1.5.2.13

1.5.2.14

1.5.2.15

1.5.3

1.5.4

1.5.5

1.5.5.1

1.5.5.2

1.5.5.2.1

1.5.5.2.2

1.5.5.2.3

1.5.5.2.4

1.5.5.2.5

1.5.5.2.6

Table of Contents
Introduction

Getting started

An HTTP Server

A Command Line Application

Using the compiler

The shards command

Syntax and semantics

Comments

Literals

Nil

Bool

Integers

Floats

Char

String

Symbol

Array

Hash

Range

Regex

Tuple

NamedTuple

Proc

Command

Assignment

Local variables

Control expressions

Truthy and falsey values

if

As a suffix

As an expression

Ternary if

if var

if var.is_a?(...)

if var.responds_to?(...)

Nil

2

1.5.5.2.7

1.5.5.2.8

1.5.5.3

1.5.5.4

1.5.5.5

1.5.5.5.1

1.5.5.5.2

1.5.5.6

1.5.5.7

1.5.5.8

1.5.6

1.5.7

1.5.7.1

1.5.7.2

1.5.7.3

1.5.7.3.1

1.5.7.3.2

1.5.7.3.3

1.5.7.3.4

1.5.7.3.5

1.5.7.3.6

1.5.7.3.7

1.5.7.3.8

1.5.7.3.9

1.5.7.3.10

1.5.7.3.11

1.5.7.3.12

1.5.7.3.13

1.5.7.3.13.1

1.5.7.3.14

1.5.7.3.15

1.5.7.3.16

1.5.7.4

1.5.7.5

1.5.7.6

1.5.7.7

1.5.7.8

1.5.7.9

if var.nil?

if !

unless

case

while

break

next

until

&&

||

Requiring files

Types and methods

Everything is an object

The Program

Classes and methods

new, initialize and allocate

Methods and instance variables

Type inference

Union types

Overloading

Default values and named arguments

Splats and tuples

Type restrictions

Return types

Method arguments

Operators

Visibility

Inheritance

Virtual and abstract types

Class methods

Class variables

finalize

Modules

Generics

Structs

Constants

Enums

Blocks and Procs

Nil

3

1.5.7.9.1

1.5.7.9.2

1.5.7.9.3

1.5.7.9.4

1.5.7.10

1.5.8

1.5.9

1.5.10

1.5.10.1

1.5.10.2

1.5.10.3

1.5.10.4

1.5.10.5

1.5.10.6

1.5.11

1.5.11.1

1.5.11.2

1.5.11.3

1.5.12

1.5.12.1

1.5.13

1.5.13.1

1.5.13.2

1.5.13.3

1.5.13.4

1.5.13.5

1.5.14

1.5.14.1

1.5.15

1.5.15.1

1.5.15.2

1.5.15.2.1

1.5.15.2.2

1.5.15.3

1.5.15.4

1.5.15.5

1.5.15.6

1.5.15.7

Capturing blocks

Proc literal

Block forwarding

Closures

alias

Exception handling

Type grammar

Type reflection

is_a?

nil?

responds_to?

as

as?

typeof

Macros

Macro methods

Hooks

Fresh variables

Annotations

Built-in annotations

Low-level primitives

pointerof

sizeof

instance_sizeof

offsetof

Uninitialized variable declaration

Compile-time flags

Cross-compilation

C bindings

lib

fun

out

to_unsafe

struct

union

enum

Variables

Constants

Nil

4

1.5.15.8

1.5.15.9

1.5.15.10

1.5.16

1.6

1.6.1

1.6.2

1.7

1.7.1

1.7.2

1.7.3

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.4.1

1.8.4.2

1.8.5

1.8.5.1

1.8.5.2

type

alias

Callbacks

Unsafe code

Conventions

Coding style

Documenting code

Database

Connection

Connection pool

Transactions

Guides

Performance

Concurrency

Testing

Writing Shards

Hosting on GitHub

Hosting on GitLab

Continuous Integration

Using Travis CI

Using CircleCI

Nil

5

Crystal Programming Language
Welcome to the language reference for the Crystal programming language!

Crystal is a programming language with the following goals:

Have a syntax similar to Ruby (but compatibility with it is not a goal).
Be statically type-checked, but without having to specify the type of variables
or method arguments.
Be able to call C code by writing bindings to it in Crystal.
Have compile-time evaluation and generation of code, to avoid boilerplate
code.
Compile to efficient native code.

From here, you can jump to anywhere you want in this document. Although, if you
are new to the Crystal Language, we suggest that you continue reading the
Getting started section.

Crystal's standard library is documented in the API docs.

https://crystal-lang.org/api

Nil

6

Getting started
Hi and welcome to Crystal's Reference Book!

First let's make sure to install the compiler correctly so that we may try all the
examples listed in this book.

Once installed, the Crystal compiler should be available as crystal command.

Let's try it!

Crystal version
We may check the Crystal compiler version. If Crystal is installed correctly then
we should see something like this:

$ crystal --version
Crystal 0.34.0 (2020-04-07)

LLVM: 10.0.0
Default target: x86_64-apple-macosx

Great!

Crystal help
Now, if we want to list all the options given by the compiler, we may run crystal
program without any arguments:

$ crystal
Usage: crystal [command] [switches] [program file] [--] [arguments]

Command:
 init generate a new project
 build build an executable
 docs generate documentation
 env print Crystal environment information
 eval eval code from args or standard input
 play starts Crystal playground server
 run (default) build and run program
 spec build and run specs (in spec directory)
 tool run a tool
 help, --help, -h show this help
 version, --version, -v show version

Run a command followed by --help to see command specific information, ex:
 crystal <command> --help

More details about using the compiler can be found on the manpage man crystal
or in our compiler manual.

https://crystal-lang.org/install/

Nil

7

Hello Crystal
The following example is the classic Hello World. In Crystal it looks like this:

hello_world.cr

puts "Hello World!"

We may run our example like this:

$ crystal hello_world.cr
Hello World!

Note: The main routine is simply the program itself. There's no need to define a
"main" function or something similar.

Here we have two more examples to continue our first steps in Crystal:

HTTP Server
Command Line Application

Nil

8

HTTP Server
A slightly more interesting example is an HTTP Server:

require "http/server"

server = HTTP::Server.new do |context|
 context.response.content_type = "text/plain"
 context.response.print "Hello world! The time is #{Time.local}"
end

address = server.bind_tcp 8080
puts "Listening on http://#{address}"
server.listen

The above code will make sense once you read the whole language reference,
but we can already learn some things.

You can require code defined in other files:

require "http/server"

You can define local variables without the need to specify their type:

server = HTTP::Server.new ...

The port of the HTTP server is set by using the method bind_tcp on the
object HTTP::Server (the port set to 8080).

address = server.bind_tcp 8080

You program by invoking methods (or sending messages) to objects.

HTTP::Server.new ...
...
Time.local
...
address = server.bind_tcp 8080
...
puts "Listening on http://#{address}"
...
server.listen

You can use code blocks, or simply blocks, which are a very convenient way
to reuse code and get some features from the functional world:

HTTP::Server.new do |context|
 ...
end

You can easily create strings with embedded content, known as string
interpolation. The language comes with other syntax as well to create arrays,

Nil

9

hashes, ranges, tuples and more:

"Hello world! The time is #{Time.local}"

Nil

10

Command Line Interface Application
Programming Command Line Interface applications (CLI applications) is one of
the most entertaining tasks a developer may do. So let’s have some fun building
our first CLI application in Crystal.

There are two main topics when building a CLI application:

input
output

Input
This topic covers all things related to:

options passed to the app
request for user input

Options

It is a very common practice to pass options to the application. For example, we
may run crystal -v and Crystal will display:

$ crystal -v
Crystal 0.31.1 (2019-10-02)

LLVM: 8.0.1
Default target: x86_64-apple-macosx

and if we run: crystal -h , then Crystal will show all the accepted options and how
to use them.

So now the question would be: do we need to implement an options parser?
No need to, Crystal got us covered with the class OptionParser . Let’s build an
application using this parser!

At start our CLI application will have two options:

 -v / --version : it will display the application version.
 -h / --help : it will display the application help.

Nil

11

file: help.cr
require "option_parser"

OptionParser.parse do |parser|
 parser.banner = "Welcome to The Beatles App!"

 parser.on "-v", "--version", "Show version" do
 puts "version 1.0"
 exit
 end
 parser.on "-h", "--help", "Show help" do
 puts parser
 exit
 end
end

So, how does all this work? Well … magic! No, it’s not really magic! Just Crystal
making our life easy. When our application starts, the block passed to
 OptionParser#parse gets executed. In that block we define all the options. After the
block is executed, the parser will start consuming the arguments passed to the
application, trying to match each one with the options defined by us. If an option
matches then the block passed to parser#on gets executed!

We can read all about OptionParser in the official API documentation. And from
there we are one click away from the source code ... the actual proof that it is not
magic!

Now, let's run our application. We have two ways using the compiler:

1. Build the application and then run it.
2. Compile and run the application, all in one command.

We are going to use the second way:

$ crystal ./help.cr -- -h

Welcome to The Beatles App!
 -v, --version Show version
 -h, --help Show help

Let's build another fabulous application with the following feature:

By default (i.e. no options given) the application will display the names of the Fab
Four. But, if we pass the option -t / --twist it will display the names in
uppercase:

https://crystal-lang.org/api/latest/OptionParser.html

Nil

12

file: twist_and_shout.cr
require "option_parser"

the_beatles = [
 "John Lennon",
 "Paul McCartney",
 "George Harrison",
 "Ringo Starr"
]
shout = false

option_parser = OptionParser.parse do |parser|
 parser.banner = "Welcome to The Beatles App!"

 parser.on "-v", "--version", "Show version" do
 puts "version 1.0"
 exit
 end
 parser.on "-h", "--help", "Show help" do
 puts parser
 exit
 end
 parser.on "-t", "--twist", "Twist and SHOUT" do
 shout = true
 end
end

members = the_beatles
members = the_beatles.map &.upcase if shout

puts ""
puts "Group members:"
puts "=============="
members.each do |member|
 puts member
end

Running the application with the -t option will output:

$ crystal run ./twist_and_shout.cr -- -t

Group members:
==============
JOHN LENNON
PAUL MCCARTNEY
GEORGE HARRISON
RINGO STARR

Parameterized options

Let’s create another application: when passing the option -g / --goodbye_hello ,
the application will say hello to a given name passed as a parameter to the
option.

Nil

13

In this case, the block receives a parameter that represents the parameter passed
to the option.

Let’s try it!

$ crystal ./hello_goodbye.cr -- -g "Penny Lane"

You say goodbye, and Ringo Starr say hello to Penny Lane!

Great! These applications look awesome! But, what happens when we pass an
option that is not declared? For example -n

$ crystal ./hello_goodbye.cr -- -n
Unhandled exception: Invalid option: -n (OptionParser::InvalidOption)
 from ...

Oh no! It’s broken: we need to handle invalid options and invalid parameters
given to an option! For these two situations, the OptionParser class has two
methods: #invalid_option and #missing_option

So, let's add this option handlers and merge all this CLI applications into one
fabulous CLI application!

All My CLI: The complete application!

file: hello_goodbye.cr
require "option_parser"

the_beatles = [
 "John Lennon",
 "Paul McCartney",
 "George Harrison",
 "Ringo Starr"
]
say_hi_to = ""

option_parser = OptionParser.parse do |parser|
 parser.banner = "Welcome to The Beatles App!"

 parser.on "-v", "--version", "Show version" do
 puts "version 1.0"
 exit
 end
 parser.on "-h", "--help", "Show help" do
 puts parser
 exit
 end
 parser.on "-g NAME", "--goodbye_hello=NAME", "Say hello to whoever you want" do |nam
 say_hi_to = name
 end
end

unless say_hi_to.empty?
 puts ""
 puts "You say goodbye, and #{the_beatles.sample} says hello to #{say_hi_to}!"
end

Nil

14

Here’s the final result, with invalid/missing options handling, plus other new
options:

Nil

15

file: all_my_cli.cr
require "option_parser"

the_beatles = [
 "John Lennon",
 "Paul McCartney",
 "George Harrison",
 "Ringo Starr"
]
shout = false
say_hi_to = ""
strawberry = false

option_parser = OptionParser.parse do |parser|
 parser.banner = "Welcome to The Beatles App!"

 parser.on "-v", "--version", "Show version" do
 puts "version 1.0"
 exit
 end
 parser.on "-h", "--help", "Show help" do
 puts parser
 exit
 end
 parser.on "-t", "--twist", "Twist and SHOUT" do
 shout = true
 end
 parser.on "-g NAME", "--goodbye_hello=NAME", "Say hello to whoever you want" do |nam
 say_hi_to = name
 end
 parser.on "-r", "--random_goodbye_hello", "Say hello to one random member" do
 say_hi_to = the_beatles.sample
 end
 parser.on "-s", "--strawberry", "Strawberry fields forever mode ON" do
 strawberry = true
 end
 parser.missing_option do |option_flag|
 STDERR.puts "ERROR: #{option_flag} is missing something."
 STDERR.puts ""
 STDERR.puts parser
 exit(1)
 end
 parser.invalid_option do |option_flag|
 STDERR.puts "ERROR: #{option_flag} is not a valid option."
 STDERR.puts parser
 exit(1)
 end
end

members = the_beatles
members = the_beatles.map &.upcase if shout

puts "Strawberry fields forever mode ON" if strawberry

puts ""
puts "Group members:"
puts "=============="
members.each do |member|
 puts "#{strawberry ? "🍓" : "-"} #{member}"
end

unless say_hi_to.empty?
 puts ""
 puts "You say goodbye, and I say hello to #{say_hi_to}!"
end

Nil

16

Request for user input

Sometimes, we may need the user to input a value. How do we read that value?
Easy, peasy! Let’s create a new application: the Fab Four will sing with us any
phrase we want. When running the application, it will request a phrase to the user
and the magic will happen!

file: let_it_cli.cr
puts "Welcome to The Beatles Sing Along version 1.0!"
puts "Enter a phrase you want The Beatles to sing"
print "> "
user_input = gets
puts "The Beatles are singing: 🎵#{user_input}🎶🎸🥁"

The method gets will pause the execution of the application, until the user
finishes entering the input (pressing the Enter key). When the user presses
 Enter , then the execution will continue and user_input will have the user value.

But what happen if the user doesn’t enter any value? In that case, we would get
an empty string (if the user only presses Enter) or maybe a Nil value (if the
input stream id closed, e.g. by pressing Ctrl+D). To illustrate the problem let’s try
the following: we want the input entered by the user to be sang loudly:

file: let_it_cli.cr
puts "Welcome to The Beatles Sing Along version 1.0!"
puts "Enter a phrase you want The Beatles to sing"
print "> "
user_input = gets
puts "The Beatles are singing: 🎵#{user_input.upcase}🎶🎸🥁"

When running the example, Crystal will reply:

$ crystal ./let_it_cli.cr
Showing last frame. Use --error-trace for full trace.

In let_it_cli.cr:5:46

 5 | puts "The Beatles are singing: 🎵#{user_input.upper_case}
 ^---------
Error: undefined method 'upper_case' for Nil (compile-time type is (String | Nil))

Ah! We should have known better: the type of the user input is the union type
 String | Nil . So, we have to test for Nil and for empty and act naturally for
each case:

https://crystal-lang.org/api/latest/toplevel.html#gets%28*args,**options%29-class-method
https://crystal-lang.org/reference/syntax_and_semantics/type_grammar.html

Nil

17

file: let_it_cli.cr
puts "Welcome to The Beatles Sing Along version 1.0!"
puts "Enter a phrase you want The Beatles to sing"
print "> "
user_input = gets

exit if user_input.nil? # Ctrl+D

default_lyrics = "Na, na, na, na-na-na na" \
 " / " \
 "Na-na-na na, hey Jude"

lyrics = user_input.presence || default_lyrics

puts "The Beatles are singing: 🎵#{lyrics.upcase}🎶🎸🥁"

Output
Now, we will focus on the second main topic: our application’s output. For starters,
our applications already display information but (I think) we could do better. Let’s
add more life (i.e. colors!) to the outputs.

And to accomplish this, we will be using the Colorize module.

Let’s build a really simple application that shows a string with colors! We will use
yellow font on a black background:

file: yellow_cli.cr
require "colorize"

puts "#{"The Beatles".colorize(:yellow).on(:black)} App"

Great! That was easy! Now imagine using this string as the banner for our All My
CLI application, it's easy if you try:

 parser.banner = "#{"The Beatles".colorize(:yellow).on(:black)} App"

For our second application, we will add a text decoration (blink in this case):

file: let_it_cli.cr
require "colorize"

puts "Welcome to The Beatles Sing Along version 1.0!"
puts "Enter a phrase you want The Beatles to sing"
print "> "
user_input = gets

exit if user_input.nil? # Ctrl+D

default_lyrics = "Na, na, na, na-na-na na" \
 " / " \
 "Na-na-na na, hey Jude"

lyrics = user_input.presence || default_lyrics

puts "The Beatles are singing: #{"🎵#{user_input}🎶🎸🥁".colorize.mode(:blink)}"

https://crystal-lang.org/api/latest/Colorize.html

Nil

18

Let’s try the renewed application … and hear the difference!! Now we have two
fabulous apps!!

You may find a list of available colors and text decorations in the API
documentation.

Testing
As with any other application, at some point we would like to write tests for the
different features.

Right now the code containing the logic of each of the applications always gets
executed with the OptionParser , i.e. there is no way to include that file without
running the whole application. So first we would need to refactor the code,
separating the code necessary for parsing options from the logic. Once the
refactor is done, we could start testing the logic and including the file with the logic
in the testing files we need. We leave this as an exercise for the reader.

Using Readline and NCurses
In case we want to build richer CLI applications, there are libraries that can help
us. Here we will name two well-known libraries: Readline and NCurses .

As stated in the documentation for the GNU Readline Library, Readline is a
library that provides a set of functions for use by applications that allow users to
edit command lines as they are typed in. Readline has some great features:
filename autocompletion out of the box; custom autocompletion method;
keybinding, just to mention a few. If we want to try it then the crystal-lang/crystal-
readline shard will give us an easy API to use Readline .

On the other hand, we have NCurses (New Curses). This library allows developers
to create graphical user interfaces in the terminal. As its name implies, it is an
improved version of the library named Curses , which was developed to support a
text-based dungeon-crawling adventure game called Rogue! As you can imagine,
there are already a couple of shards in the ecosystem that will allow us to use
 NCurses in Crystal!

And so we have reached The End 😎🎶

https://crystal-lang.org/api/latest/Colorize.html
http://www.gnu.org/software/readline/
https://github.com/crystal-lang/crystal-readline
https://crystalshards.org/?filter=ncurses

Nil

19

Using the compiler

Compiling and running at once
To compile and run a program in a single shot, invoke crystal run with a single
filename:

$ echo 'puts "Hello World!"' > hello_world.cr
$ crystal run hello_world.cr
Hello World!

The run command compiles the source file hello_world.cr to a binary
executable in a temporary location and immediately executes it.

Creating an executable
The crystal build command builds a binary executable. The output file has the
same name as the source file minus the extension .cr .

$ crystal build hello_world.cr
$./hello_world
Hello World!

Release builds

By default, the generated executables are not fully optimized. The --release flag
can be used to enable optimizations.

$ crystal build hello_world.cr --release

Compiling without release mode is much faster and the resulting binaries still offer
pretty good performance.

Building in release mode should be used for production-ready executables and
when performing benchmarks. For simple development builds, there is usually no
reason to do so.

To reduce the binary size for distributable files, the --no-debug flag can be used.
This removes debug symbols reducing file size, but obviously making debugging
more difficult.

Creating a statically-linked executable

The --static flag can be used to build a statically-linked executable:

$ crystal build hello_world.cr --release --static

Nil

20

NOTE: Building fully statical linked executables is currently only supported on
Alpine Linux.

More information about statically linking can be found on the wiki.

The compiler uses the CRYSTAL_LIBRARY_PATH environment variable as a first lookup
destination for static and dynamic libraries that are to be linked. This can be used
to provide static versions of libraries that are also available as dynamic libraries.

Creating a Crystal project

The crystal init command helps to initialize a Crystal project folder, setting up a
basic project structure. crystal init app <name> is used for an application, crystal
init lib <name> for a library.

$ crystal init app myapp
 create myapp/.gitignore
 create myapp/.editorconfig
 create myapp/LICENSE
 create myapp/README.md
 create myapp/.travis.yml
 create myapp/shard.yml
 create myapp/src/myapp.cr
 create myapp/src/myapp/version.cr
 create myapp/spec/spec_helper.cr
 create myapp/spec/myapp_spec.cr
Initialized empty Git repository in /home/crystal/myapp/.git/

Not all of these files are required for every project, and some might need more
customization, but crystal init creates a good default environment for
developing Crystal applications and libraries.

Compiler commands
 crystal init : generate a new project
 crystal build : build an executable
 crystal docs : generate documentation
 crystal env : print Crystal environment information
 crystal eval : eval code from args or standard input
 crystal play : starts crystal playground server
 crystal run : build and run program
 crystal spec : build and run specs
 crystal tool : run a compiler tool
 crystal help : show help about commands and options
 crystal version : show version

To see the available options for a particular command, use --help after a
command:

 crystal run

https://github.com/crystal-lang/crystal/wiki/Static-Linking

Nil

21

The run command compiles a source file to a binary executable and immediately
runs it.

crystal [run] [<options>] <programfile> [-- <argument>...]

Arguments to the compiled binary can be separated with double dash -- from
the compiler arguments. The binary executable is stored in a temporary location
between compiling and running.

Example:

$ echo 'puts "Hello #{ARGV[0]?}!"' > hello_world.cr
$ crystal run hello_world.cr -- Crystal
Hello Crystal!

Common options:

 --release : Compile in release mode, doing extra work to apply optimizations
to the generated code.
 --progress : Show progress during compilation.
 --static : Link statically.

More options are described in the integrated help: crystal run --help or man
page man crystal .

 crystal build

The crystal build command builds a dynamically-linked binary executable.

crystal build [<options>] <programfile>

Unless specified, the resuling binary will have the same name as the source file
minus the extension .cr .

Example:

$ echo 'puts "Hello #{ARGV[0]?}!"' > hello_world.cr
$ crystal build hello_world.cr
$./hello_world Crystal
Hello Crystal!

Common options:

 --cross-compile : Generate a .o file, and print the command to generate an
executable to stdout.
 -D FLAG, --define FLAG : Define a compile-time flag.
 -o <output_file> : Define the name of the binary executable.
 --release : Compile in release mode, doing extra work to apply optimizations
to the generated code.
 --link-flags FLAGS : Additional flags to passs to the linker.
 --lto=thin : Use ThinLTO, improving performance on release builds.
 --no-debug : Skip any symbolic debug info, reducing the output file size.

Nil

22

 --progress : Show progress during compilation.
 --static : Link statically.
 --verbose : Display executed commands.

More options are described in the integrated help: crystal build --help or man
page man crystal .

 crystal eval

The crystal eval command reads Crystal source code from command line or
stdin, compiles it to a binary executable and immediately runs it.

crystal eval [<options>] [<source>]

If no source argument is provided, the Crystal source is read from standard input.
The binary executable is stored in a temporary location between compiling and
running.

Example:

$ crystal eval 'puts "Hello World"'
Hello World!
$ echo 'puts "Hello World"' | crystal eval
Hello World!

NOTE: When running interactively, stdin can usually be closed by typing the end
of transmission character (Ctrl+D).

Common options:

 -o <output_file> : Define the name of the binary executable.
 --release : Compile in release mode, doing extra work to apply optimizations
to the generated code.
 --lto=thin : Use ThinLTO, improves performance.
 --no-debug : Skip any symbolic debug info, reducing the output file size.
 --progress : Show progress during compilation.
 --static : Link statically.

More options are described in the integrated help: crystal eval --help or man
page man crystal .

 crystal version

The crystal version command prints the Crystal version, LLVM version and
default target triple.

crystal version

Example:

Nil

23

$ crystal version
Crystal 0.25.1 [b782738ff] (2018-06-27)

LLVM: 4.0.0
Default target: x86_64-unknown-linux-gnu

 crystal init

The crystal init command initializes a Crystal project folder.

crystal init (lib|app) <name> [<dir>]

The first argument is either lib or app . A lib is a reusable library whereas
 app describes an application not intended to be used as a dependency. A library
doesn't have a shard.lock file in its repository and no build target in shard.yml ,
but instructions for using it as a dependency.

Example:

$ crystal init lib my_cool_lib
 create my_cool_lib/.gitignore
 create my_cool_lib/.editorconfig
 create my_cool_lib/LICENSE
 create my_cool_lib/README.md
 create my_cool_lib/.travis.yml
 create my_cool_lib/shard.yml
 create my_cool_lib/src/my_cool_lib.cr
 create my_cool_lib/spec/spec_helper.cr
 create my_cool_lib/spec/my_cool_lib_spec.cr
Initialized empty Git repository in ~/my_cool_lib/.git/

 crystal docs

The crystal docs command generates API documentation from inline docstrings
in Crystal files (see documenting code).

The command creates a static website in output_dir (default ./docs), consisting
of HTML files for each Crystal type, in a folder structure mirroring the Crystal
namespaces. The entrypoint docs/index.html can be opened by any web browser.
The entire API docs are also stored as a JSON document in
 $output_dir/index.json .

By default, all Crystal files in ./src will be appended (i.e. src/**/*.cr). In order
to account for load-order dependencies, source_file can be used to specify one
(or multiple) entrypoints for the docs generator.

crystal docs src/my_app.cr

Common options:

crystal docs [--output=<output_dir>] [--canonical-base-url=<url>] [<source_file>...]

Nil

24

 --project-name=NAME : Set the project name. The default value is extracted
from shard.yml if available. In case no default can be found, this option is
mandatory.
 --project-version=VERSION : Set the project version. The default value is
extracted from current git commit or shard.yml if available. In case no default
can be found, this option is mandatory.
 --output=DIR, -o DIR : Set the output directory (default: ./docs)
 --canonical-base-url=URL, -b URL : Set the canonical base url

For the above example to output the docs at public with custom canonical base
url, and entrypoint src/my_app.cr , the following arguments can be used:

crystal docs --output public --canonical-base-url http://example.com/ src/my_app.cr

 crystal env

The crystal env command prints environment variables used by Crystal.

crystal env [<var>...]

By default, it prints information as a shell script. If one or more var arguments
are provided, the value of each named variable is printed on its own line.

Example:

$ crystal env
CRYSTAL_CACHE_DIR="/home/crystal/.cache/crystal"
CRYSTAL_PATH="/usr/bin/../share/crystal/src:lib"
CRYSTAL_VERSION="0.28.0"
CRYSTAL_LIBRARY_PATH="/usr/bin/../lib/crystal/lib"
$ crystal env CRYSTAL_VERSION
0.28.0

 crystal spec

The crystal spec command compiles and runs a Crystal spec suite.

crystal spec [<options>] [<file>...] [-- [<runner_options>]]

All files arguments are concatenated into a single Crystal source. If an
argument points to a folder, all spec files inside that folder are appended. If no
 files argument is provided, the default is ./spec . A filename can be suffixed by
 : and a line number, providing this location to the --location runner option (see
below).

Run crystal spec --options for available options.

Runner options:

 runner_options are provided to the compiled binary executable which runs the
specs. They should be separated from the other arguments by a double dash (-
-).

https://en.wikipedia.org/wiki/Canonical_link_element

Nil

25

 --verbose : Prints verbose output, including all example names.
 --profile : Prints the 10 slowest specs.
 --fail-fast : Abort the spec run on first failure.
 --junit_output <output_dir> : Generates JUnit XML output.

The following options can be combined to filter the list of specs to run.

 --example <name> : Runs examples whose full nested names include name .
 --line <line> : Runs examples whose line matches line .
 --location <file>:<line> : Runs example(s) at line in file (multiple options
allowed).
 --tag <tag> : Runs examples with the specified tag, or excludes examples by
adding ~ before the tag (multiple options allowed).

 --tag a --tag b will include specs tagged with a OR b .
 --tag ~a --tag ~b will include specs not tagged with a AND not tagged
with b .
 --tag a --tag ~b will include specs tagged with a , but not tagged with
 b

Example:

$ crystal spec
F

Failures:

 1) Myapp works
 Failure/Error: false.should eq(true)

 Expected: true
 got: false

 # spec/myapp_spec.cr:7

Finished in 880 microseconds
1 examples, 1 failures, 0 errors, 0 pending

Failed examples:

crystal spec spec/myapp_spec.cr:6 # Myapp works

 crystal play

The crystal play command starts a webserver serving an interactive Crystal
playground.

crystal play [--port <port>] [--binding <host>] [--verbose] [file]

Nil

26

 crystal tool

 crystal tool context : Show context for given location
 crystal tool expand : Show macro expansion for given location
 crystal tool format : Format Crystal files
 crystal tool hierarchy : Show type hierarchy
 crystal tool implementations : Show implementations for given call in location
 crystal tool types : Show types of main variables

 crystal tool format

The crystal tool format command applies default format to Crystal source files.

crystal tool format [--check] [<path>...]

 path can be a file or folder name and include all Crystal files in that folder tree.
Omitting path is equal to specifying the current working directory.

Environment variables
The following environment variables are used by the Crystal compiler if set in the
environment. Otherwise the compiler will populate them with default values. Their
values can be inspected using crystal env .

 CRYSTAL_CACHE_DIR : Defines path where Crystal caches partial compilation
results for faster subsequent builds. This path is also used to temporarily
store executables when Crystal programs are run with crystal run rather
than crystal build . Default value is the first directory that either exists or can

Nil

27

be created of ${XDG_CACHE_HOME}/crystal (if XDG_CACHE_HOME is defined),
 ${HOME}/.cache/crystal , ${HOME}/.crystal , ./.crystal . If CRYSTAL_CACHE_DIR is
set but points to a path that is not writeable, the default values are used
instead.
 CRYSTAL_PATH : Defines paths where Crystal searches for required files.
 CRYSTAL_VERSION is only available as output of crystal env . The compiler
neither sets nor reads it.
 CRYSTAL_LIBRARY_PATH : The compiler uses the paths in this variable as a first
lookup destination for static and dynamic libraries that are to be linked. For
example, if static libraries are put in build/libs , setting the environment
variable accordingly will tell the compiler to look for libraries there.

Nil

28

The shards command
Crystal is typically accompanied by Shards, its dependency manager.

It manages dependencies for Crystal projects and libraries with reproducible
installs across computers and systems.

Installation
Shards is usually distributed with Crystal itself. Alternatively, a separate shards
package may be available for your system.

To install from source, download or clone the repository and run make CRFLAGS=--
release . The compiled binary is in bin/shards and should be added to PATH .

Usage
 shards requires the presence of a shard.yml file in the project folder (working
directory). This file describes the project and lists dependencies that are required
to build it. A default file can be created by running shards init . The file's contents
are explained in the Writing a Shard guide and a detailed description of the file
format is provided by the shard.yml specification.

Running shards install resolves and installs the specified dependencies. The
installed versions are written into a shard.lock file for using the exact same
dependency versions when running shards install again.

If your shard builds an application, both shard.yml and shard.lock should be
checked into version control to provide reproducible dependency installs. If it is
only a library for other shards to depend on, shard.lock should not be checked in,
only shard.yml . It's good advice to add it to .gitignore (the crystal init does
this automatically when initializing a lib repository).

Shards commands

shards [<options>...] [<command>]

If no command is given, install will be run by default.

 shards build : Builds an executable
 shards check : Verifies dependencies are installed
 shards init : Generates a new shard.yml
 shards install : Resolves and installs dependencies
 shards list : Lists installed dependencies
 shards prune : Removes unused dependencies
 shards update : Resolves and updates dependencies

https://github.com/crystal-lang/shards
https://github.com/crystal-lang/shards/blob/master/SPEC.md

Nil

29

 shards version : Shows version of a shard

To see the available options for a particular command, use --help after a
command.

Common options:

 --version : Prints the version of shards .
 -h, --help : Prints usage synopsis.
 --no-color : Disabled colored output.
 --production : Runs in release mode. Development dependencies won't be
installed and only locked dependencies will be installed. Commands will fail if
dependencies in shard.yml and shard.lock are out of sync (used by
 install , update , check and list command)
 -q, --quiet : Decreases the log verbosity, printing only warnings and errors.
 -v, --verbose : Increases the log verbosity, printing all debug statements.

 shards build

shards build [<targets>] [<options>...]

Builds the specified targets in bin path. If no targets are specified, all are built.
This command ensures all dependencies are installed, so it is not necessary to
run shards install before.

All options following the command are delegated to crystal build .

 shards check

shards check

Verifies that all dependencies are installed and requirements are satisfied.

Exit status:

 0 : Dependencies are satisfied.
 1 : Dependencies are not satisfied.

 shards init

shards init

Initializes a shard folder and creates a shard.yml .

 shards install

shards install

Nil

30

Resolves and installs dependencies into the lib folder. If not already present,
generates a shard.lock file from resolved dependencies, locking version numbers
or Git commits.

Reads and enforces locked versions and commits if a shard.lock file is present.
The install command may fail if a locked version doesn't match a requirement, but
may succeed if a new dependency was added, as long as it doesn't generate a
conflict, thus generating a new shard.lock file.

 shards list

shards list

Lists the installed dependencies and their versions.

 shards prune

shards prune

Removes unused dependencies from lib folder.

 shards update

shards update

Resolves and updates all dependencies into the lib folder again, whatever the
locked versions and commits in the shard.lock file. Eventually generates a new
 shard.lock file.

 shards version

shards version [<path>]

Prints the version of the shard.

Nil

31

Syntax and Semantics
The program’s source code must be encoded in UTF-8.

Comments
Literals
Assignment
Local Variables
Control Expression
Requiring Files
Types and methods
Exception Handling
Type Grammar
Type Reflection
Macros
Annotations
Low Level Primitives
Compile-time Flags
C bindings
Unsafe code

file:///tmp/calibre_4.19.0_tmp_jkxmb1xc/cm2v9zgf_pdf_out/c_bindings

Nil

32

Comments
Comments start with the # character. Only one-line comments are supported for
now.

This is a comment

Nil

33

Literals
Crystal provides several literals for creating values of some basic types.

Literal Sample values

Nil nil

Bool true , false

Integers 18 , -12 , 19_i64 , 14_u32 , 64_u8

Floats 1.0 , 1.0_f32 , 1e10 , -0.5

Char 'a' , '\n' , 'あ'

String "foo\tbar" , %("あ") , %q(foo #{foo})

Symbol :symbol , :"foo bar"

Array [1, 2, 3] , [1, 2, 3] of Int32 , %w(one two three)

Array-like Set{1, 2, 3}

Hash {"foo" => 2} , {} of String => Int32

Hash-like MyType{"foo" => "bar"}

Range 1..9 , 1...10 , 0..var

Regex /(foo)?bar/ , /foo #{foo}/imx , %r(foo/)

Tuple {1, "hello", 'x'}

NamedTuple {name: "Crystal", year: 2011} , {"this is a key": 1}

Proc ->(x : Int32, y : Int32) { x + y }

Command ̀ echo foo` , %x(echo foo)

Nil

34

Nil
The Nil type is used to represent the absence of a value, similar to null in other
languages. It only has a single value:

nil

http://crystal-lang.org/api/Nil.html

Nil

35

Bool
Bool has only two possible values: true and false . They are constructed using
the following literals:

true # A Bool that is true
false # A Bool that is false

http://crystal-lang.org/api/Bool.html

Nil

36

Integers
There are four signed integer types, and four unsigned integer types:

Type Length Minimum Value Maximum Value

Int8 8 -128 127

Int16 16 −32,768 32,767

Int32 32 −2,147,483,648 2,147,483,647

Int64 64 −2 2 - 1

UInt8 8 0 255

UInt16 16 0 65,535

UInt32 32 0 4,294,967,295

UInt64 64 0 2 - 1

An integer literal is an optional + or - sign, followed by a sequence of digits
and underscores, optionally followed by a suffix. If no suffix is present, the literal's
type is the lowest between Int32 , Int64 and UInt64 in which the number fits:

1 # Int32

1_i8 # Int8
1_i16 # Int16
1_i32 # Int32
1_i64 # Int64

1_u8 # UInt8
1_u16 # UInt16
1_u32 # UInt32
1_u64 # UInt64

+10 # Int32
-20 # Int32

2147483648 # Int64
9223372036854775808 # UInt64

The underscore _ before the suffix is optional.

Underscores can be used to make some numbers more readable:

1_000_000 # better than 1000000

Binary numbers start with 0b :

0b1101 # == 13

Octal numbers start with a 0o :

63 63

64

http://crystal-lang.org/api/Int8.html
http://crystal-lang.org/api/Int16.html
http://crystal-lang.org/api/Int32.html
http://crystal-lang.org/api/Int64.html
http://crystal-lang.org/api/UInt8.html
http://crystal-lang.org/api/UInt16.html
http://crystal-lang.org/api/UInt32.html
http://crystal-lang.org/api/UInt64.html

Nil

37

0o123 # == 83

Hexadecimal numbers start with 0x :

0xFE012D # == 16646445
0xfe012d # == 16646445

Nil

38

Floats
There are two floating point types, Float32 and Float64, which correspond to the
binary32 and binary64 types defined by IEEE.

A floating point literal is an optional + or - sign, followed by a sequence of
numbers or underscores, followed by a dot, followed by numbers or underscores,
followed by an optional exponent suffix, followed by an optional type suffix. If no
suffix is present, the literal's type is Float64 .

1.0 # Float64
1.0_f32 # Float32
1_f32 # Float32

1e10 # Float64
1.5e10 # Float64
1.5e-7 # Float64

+1.3 # Float64
-0.5 # Float64

The underscore _ before the suffix is optional.

Underscores can be used to make some numbers more readable:

1_000_000.111_111 # a lot more readable than 1000000.111111, yet functionally the same

http://crystal-lang.org/api/Float32.html
http://crystal-lang.org/api/Float64.html
http://en.wikipedia.org/wiki/Single_precision_floating-point_format
http://en.wikipedia.org/wiki/Double_precision_floating-point_format

Nil

39

Char
A Char represents a 32-bit Unicode code point.

It is typically created with a char literal by enclosing an UTF-8 character in single
quotes.

'a'
'z'
'0'
'_'
'あ'

A backslash denotes a special character, which can either be a named escape
sequence or a numerical representation of a unicode codepoint.

Available escape sequences:

'\'' # single quote
'\\' # backslash
'\a' # alert
'\b' # backspace
'\e' # escape
'\f' # form feed
'\n' # newline
'\r' # carriage return
'\t' # tab
'\v' # vertical tab
'\uFFFF' # hexadecimal unicode character
'\u{10FFFF}' # hexadecimal unicode character

A backslash followed by a u denotes a unicode codepoint. It can either be
followed by exactly four hexadecimal characters representing the unicode bytes
(\u0000 to \uFFFF) or a number of one to six hexadecimal characters wrapped in
curly braces (\u{0} to \u{10FFFF} .

'\u0041' # => 'A'
'\u{41}' # => 'A'
'\u{1F52E}' # => '🔮'

http://crystal-lang.org/api/Char.html
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Code_point

Nil

40

String
A String represents an immutable sequence of UTF-8 characters.

A String is typically created with a string literal enclosing UTF-8 characters in
double quotes ("):

"hello world"

Escaping
A backslash denotes a special character inside a string, which can either be a
named escape sequence or a numerical representation of a unicode codepoint.

Available escape sequences:

"\"" # double quote
"\\" # backslash
"\a" # alert
"\b" # backspace
"\e" # escape
"\f" # form feed
"\n" # newline
"\r" # carriage return
"\t" # tab
"\v" # vertical tab
"\888" # octal ASCII character
"\xFF" # hexadecimal ASCII character
"\uFFFF" # hexadecimal unicode character
"\u{0}".."\u{10FFFF}" # hexadecimal unicode character

Any other character following a backslash is interpreted as the character itself.

A backslash followed by at most three digits ranging from 0 to 7 denotes a code
point written in octal:

"\101" # => "A"
"\123" # => "S"
"\12" # => "\n"
"\1" # string with one character with code point 1

A backslash followed by a u denotes a unicode codepoint. It can either be
followed by exactly four hexadecimal characters representing the unicode bytes
(\u0000 to \uFFFF) or a number of one to six hexadecimal characters wrapped in
curly braces (\u{0} to \u{10FFFF} .

"\u0041" # => "A"
"\u{41}" # => "A"
"\u{1F52E}" # => "🔮"

http://crystal-lang.org/api/String.html

Nil

41

One curly brace can contain multiple unicode characters each separated by a
whitespace.

"\u{48 45 4C 4C 4F}" # => "HELLO"

Interpolation
A string literal with interpolation allows to embed expressions into the string which
will be expanded at runtime.

a = 1
b = 2
"sum: #{a} + #{b} = #{a + b}" # => "sum: 1 + 2 = 3"

String interpolation is also possible with String#%.

Any expression may be placed inside the interpolated section, but it’s best to keep
the expression small for readability.

Interpolation can be disabled by escaping the # character with a backslash or by
using a non-interpolating string literal like %q() .

"\#{a + b}" # => "#{a + b}"
%q(#{a + b}) # => "#{a + b}"

Interpolation is implemented using a String::Builder and invoking Object#to_s(IO)
on each expression enclosed by #{...} . The expression "sum: #{a} + #{b} = #{a +
b}" is equivalent to:

String.build do |io|
 io << "sum: "
 io << a
 io << " + "
 io << b
 io << " = "
 io << a + b
end

Percent string literals
Besides double-quotes strings, Crystal also supports string literals indicated by a
percent sign (%) and a pair of delimiters. Valid delimiters are parentheses () ,
square brackets [] , curly braces {} , angles <> and pipes || . Except for the
pipes, all delimiters can be nested meaning a start delimiter inside the string
escapes the next end delimiter.

These are handy to write strings that include double quotes which would have to
be escaped in double-quoted strings.

https://crystal-lang.org/api/String.html#%25%28other%29-instance-method
http://crystal-lang.org/api/String/Builder.html

Nil

42

%(hello ("world")) # => "hello (\"world\")"
%[hello ["world"]] # => "hello [\"world\"]"
%{hello {"world"}} # => "hello {\"world\"}"
%<hello <"world">> # => "hello <\"world\">"
%|hello "world"| # => "hello \"world\""

A literal denoted by %q does not apply interpolation nor escapes while %Q has
the same meaning as % .

name = "world"
%q(hello \n #{name}) # => "hello \\n \#{name}"
%Q(hello \n #{name}) # => "hello \n world"

Percent string array literal
Besides the single string literal, there is also a percent literal to create an Array of
strings. It is indicated by %w and a pair of delimiters. Valid delimiters are as same
as percent string literals.

%w(foo bar baz) # => ["foo", "bar", "baz"]
%w(foo\nbar baz) # => ["foo\\nbar", "baz"]
%w(foo(bar) baz) # => ["foo(bar)", "baz"]

Note that literal denoted by %w does not apply interpolation nor escapes expect
spaces. Since strings are separated by a single space character () which must
be escaped to use it as a part of a string.

%w(foo\ bar baz) # => ["foo bar", "baz"]

Multiline strings
Any string literal can span multiple lines:

"hello
 world" # => "hello\n world"

Note that in the above example trailing and leading spaces, as well as newlines,
end up in the resulting string. To avoid this a string can be split into multiple lines
by joining multiple literals with a backslash:

"hello " \
"world, " \
"no newlines" # same as "hello world, no newlines"

Alternatively, a backslash followed by a newline can be inserted inside the string
literal:

https://crystal-lang.org/api/Array.html

Nil

43

"hello \
 world, \
 no newlines" # same as "hello world, no newlines"

In this case, leading whitespace is not included in the resulting string.

Heredoc
A here document or heredoc can be useful for writing strings spanning over
multiple lines. A heredoc is denoted by <<- followed by an heredoc identifier
which is an alphanumeric sequence starting with a letter (and may include
underscores). The heredoc starts in the following line and ends with the next line
that starts with the heredoc identifier (ignoring leading whitespace) and is either
followed by a newline or a non-alphanumeric character.

<<-XML
<parent>
 <child />
</parent>
XML

Leading whitespace is removed from the heredoc contents according to the
number of whitespace in the last line before the heredoc identifier.

<<-STRING # => "Hello\n world"
 Hello
 world
 STRING

<<-STRING # => " Hello\n world"
 Hello
 world
 STRING

It is possible to directly call methods on heredoc string literals, or use them inside
parentheses:

<<-SOME.upcase # => "HELLO"
hello
SOME

def upcase(string)
 string.upcase
end

upcase(<<-SOME) # => "HELLO"
 hello
 SOME

A heredoc generally allows interpolation and escapes.

To denote a heredoc without interpolation or escapes, the opening heredoc
identifier is enclosed in single quotes:

Nil

44

<<-'HERE' # => "hello \\n \#{world}"
 hello \n #{world}
 HERE

Nil

45

Symbol
A Symbol represents a unique name inside the entire source code.

Symbols are interpreted at compile time and cannot be created dynamically. The
only way to create a Symbol is by using a symbol literal, denoted by a colon (:)
followed by an identifier. The identifier may optionally be enclosed in double
quotes (").

:unquoted_symbol
:"quoted symbol"
:"a" # identical to :a
:あ

A double-quoted identifier can contain any unicode character including white
spaces and accepts the same escape sequences as a string literal, yet no
interpolation.

For an unquoted identifier the same naming rules apply as for methods. It can
contain alphanumeric characters, underscore (_) or characters with a code point
greater than 159 (0x9F). It must not start with a number and may end with an
exclamation mark (!) or question mark (?).

:question?
:exclamation!

All Crystal operators can be used as symbol names unquoted:

:+
:-
:*
:/
:%
:&
:|
:^
:**
:>>
:<<
:==
:!=
:<
:<=
:>
:>=
:<=>
:===
:[]
:[]?
:[]=
:!
:~
:!~
:=~

http://crystal-lang.org/api/Symbol.html

Nil

46

Internally, symbols are implemented as constants with a numeric value of type
 Int32 .

Percent symbol array literal
Besides the single symbol literal, there is also a percent literal to create an Array
of symbols. It is indicated by %i and a pair of delimiters. Valid delimiters are
parentheses () , square brackets [] , curly braces {} , angles <> and pipes
 || . Except for the pipes, all delimiters can be nested; meaning a start delimiter
inside the string escapes the next end delimiter.

%i(foo bar baz) # => [:foo, :bar, :baz]
%i(foo\nbar baz) # => [:"foo\nbar", :baz]
%i(foo(bar) baz) # => [:"foo(bar)", :baz]

Identifiers may contain any unicode characters. Individual symbols are separated
by a single space character () which must be escaped to use it as a part of an
identifier.

%i(foo\ bar baz) # => [:"foo bar", :baz]

https://crystal-lang.org/api/Array.html

Nil

47

Array
An Array is an ordered and integer-indexed generic collection of elements of a
specific type T .

Arrays are typically created with an array literal denoted by square brackets ([])
and individual elements separated by a comma (,).

[1, 2, 3]

Generic Type Argument
The array's generic type argument T is inferred from the types of the elements
inside the literal. When all elements of the array have the same type, T equals to
that. Otherwise it will be a union of all element types.

[1, 2, 3] # => Array(Int32)
[1, "hello", 'x'] # => Array(Int32 | String | Char)

An explicit type can be specified by immediately following the closing bracket with
 of and a type, each separated by whitespace. This overwrites the inferred type
and can be used for example to create an array that holds only some types
initially but can accept other types later.

array_of_numbers = [1, 2, 3] of Float64 | Int32 # => Array(Float64 | Int32)
array_of_numbers << 0.5 # => [1, 2, 3, 0.5]

array_of_int_or_string = [1, 2, 3] of Int32 | String # => Array(Int32 | String)
array_of_int_or_string << "foo" # => [1, 2, 3, "foo"]

Empty array literals always need a type specification:

[] of Int32 # => Array(Int32).new

Percent Array Literals
Arrays of strings and arrays of symbols can be created with percent array literals:

%w(one two three) # => ["one", "two", "three"]
%i(one two three) # => [:one, :two, :three]

Array-like Type Literal

http://crystal-lang.org/api/Array.html

Nil

48

Crystal supports an additional literal for arrays and array-like types. It consists of
the name of the type followed by a list of elements enclosed in curly braces ({})
and individual elements separated by a comma (,).

Array{1, 2, 3}

This literal can be used with any type as long as it has an argless constructor and
responds to << .

IO::Memory{1, 2, 3}
Set{1, 2, 3}

For a non-generic type like IO::Memory , this is equivalent to:

array_like = IO::Memory.new
array_like << 1
array_like << 2
array_like << 3

For a generic type like Set , the generic type T is inferred from the types of the
elements in the same way as with the array literal. The above is equivalent to:

array_like = Set(typeof(1, 2, 3)).new
array_like << 1
array_like << 2
array_like << 3

The type arguments can be explicitly specified as part of the type name:

Set(Int32){1, 2, 3}

Nil

49

Hash
A Hash is a generic collection of key-value pairs mapping keys of type K to
values of type V .

Hashes are typically created with a hash literal denoted by curly braces ({ })
enclosing a list of pairs using => as delimiter between key and value and
separated by commas , .

{"one" => 1, "two" => 2}

Generic Type Argument
The generic type arguments for keys K and values V are inferred from the
types of the keys or values inside the literal, respectively. When all have the same
type, K / V equals to that. Otherwise it will be a union of all key types or value
types respectively.

{1 => 2, 3 => 4} # Hash(Int32, Int32)
{1 => 2, 'a' => 3} # Hash(Int32 | Char, Int32)

Explicit types can be specified by immediately following the closing bracket with
 of (separated by whitespace), a key type (K) followed by => as delimiter and
a value type (V). This overwrites the inferred types and can be used for example
to create a hash that holds only some types initially but can accept other types as
well.

Empty hash literals always need type specifications:

{} of Int32 => Int32 # => Hash(Int32, Int32).new

Hash-like Type Literal
Crystal supports an additional literal for hashes and hash-like types. It consists of
the name of the type followed by a list of comma separated key-value pairs
enclosed in curly braces ({}).

Hash{"one" => 1, "two" => 2}

This literal can be used with any type as long as it has an argless constructor and
responds to []= .

HTTP::Headers{"foo" => "bar"}

For a non-generic type like HTTP::Headers , this is equivalent to:

http://crystal-lang.org/api/Hash.html

Nil

50

headers = HTTP::Headers.new
headers["foo"] = "bar"

For a generic type, the generic types are inferred from the types of the keys and
values in the same way as with the hash literal.

MyHash{"foo" => 1, "bar" => "baz"}

If MyHash is generic, the above is equivalent to this:

my_hash = MyHash(typeof("foo", "bar"), typeof(1, "baz")).new
my_hash["foo"] = 1
my_hash["bar"] = "baz"

The type arguments can be explicitly specified as part of the type name:

MyHash(String, String | Int32){"foo" => "bar"}

Nil

51

Range
A Range represents an interval between two values. It is typically constructed with
a range literal, consisting of two or three dots:

 x..y : Two dots denote an inclusive range, including x and y and all
values in between (in mathematics: [x, y]) .
 x...y : Three dots denote an exclusive range, including x and all values up
to but not including y (in mathematics: [x, y)).

(0..5).to_a # => [0, 1, 2, 3, 4, 5]
(0...5).to_a # => [0, 1, 2, 3, 4]

NOTE: Range literals are often wrapped in parentheses, for example if it is meant
to be used as the receiver of a call. 0..5.to_a without parentheses would be
semantically equivalent to 0..(5.to_a) because method calls and other operators
have higher precedence than the range literal.

An easy way to remember which one is inclusive and which one is exclusive it to
think of the extra dot as if it pushes y further away, thus leaving it outside of the
range.

The literal x..y is semantically equivalent to the explicit constructor Range.new(x,
y) and x...y to Range.new(x, y, true) .

The begin and end values do not necessarily need to be of the same type:
 true..1 is a valid range, although pretty useless Enumerable methods won't work
with incompatible types. They need at least to be comparable.

Ranges with nil as begin are called begin-less and nil as end are called end-
less ranges. In the literal notation, nil can be omitted: x.. is an end-less range
starting from x , and ..x is an begin-less range ending at x .

numbers = [1, 10, 3, 4, 5, 8]
numbers.select(6..) # => [10, 8]
numbers.select(..6) # => [1, 3, 4, 5]

numbers[2..] = [3, 4, 5, 8]
numbers[..2] = [1, 10, 3]

A range that is both begin-less and end-less is valid and can be expressed as ..
or ... but it's typically not very useful.

http://crystal-lang.org/api/Range.html

Nil

52

Regular Expressions
Regular expressions are represented by the Regex class.

A Regex is typically created with a regex literal using PCRE syntax. It consists of
a string of UTF-8 character enclosed in forward slashes (/):

/foo|bar/
/h(e+)llo/
/\d+/
/あ/

Escaping
Regular expressions support the same escape sequences as String literals.

/\// # slash
/\\/ # backslash
/\b/ # backspace
/\e/ # escape
/\f/ # form feed
/\n/ # newline
/\r/ # carriage return
/\t/ # tab
/\v/ # vertical tab
/\NNN/ # octal ASCII character
/\xNN/ # hexadecimal ASCII character
/\x{FFFF}/ # hexadecimal unicode character
/\x{10FFFF}/ # hexadecimal unicode character

The delimiter character / must be escaped inside slash-delimited regular
expression literals. Note that special characters of the PCRE syntax need to be
escaped if they are intended as literal characters.

Interpolation
Interpolation works in regular expression literals just as it does in string literals. Be
aware that using this feature will cause an exception to be raised at runtime, if the
resulting string results in an invalid regular expression.

Modifiers
The closing delimiter may be followed by a number of optional modifiers to adjust
the matching behaviour of the regular expression.

 i : case-insensitive matching (PCRE_CASELESS): Unicode letters in the pattern
match both upper and lower case letters in the subject string.
 m : multiline matching (PCRE_MULTILINE): The start of line (̂) and end of line
($) metacharacters match immediately following or immediately before

http://crystal-lang.org/api/Regex.html
http://pcre.org/pcre.txt

Nil

53

internal newlines in the subject string, respectively, as well as at the very start
and end.
 x : extended whitespace matching (PCRE_EXTENDED): Most white space
characters in the pattern are totally ignored except when ignore or inside a
character class. Unescaped hash characters # denote the start of a
comment ranging to the end of the line.

/foo/i.match("FOO") # => #<Regex::MatchData "FOO">
/foo/m.match("bar\nfoo") # => #<Regex::MatchData "foo">
/foo /x.match("foo") # => #<Regex::MatchData "foo">
/foo /imx.match("bar\nFOO") # => #<Regex::MatchData "FOO">

Percent regex literals
Besides slash-delimited literals, regular expressions may also be expressed as a
percent literal indicated by %r and a pair of delimiters. Valid delimiters are
parentheses () , square brackets [] , curly braces {} , angles <> and pipes
 || . Except for the pipes, all delimiters can be nested; meaning a start delimiter
inside the literal escapes the next end delimiter.

These are handy to write regular expressions that include slashes which would
have to be escaped in slash-delimited literals.

%r((/)) # => /(\/)/
%r[[/]] # => /[\/]/
%r{{/}} # => /{\/}/
%r<</>> # => /<\/>/
%r|/| # => /\//

Nil

54

Tuple
A Tuple is typically created with a tuple literal:

tuple = {1, "hello", 'x'} # Tuple(Int32, String, Char)
tuple[0] # => 1 (Int32)
tuple[1] # => "hello" (String)
tuple[2] # => 'x' (Char)

To create an empty tuple use Tuple.new.

To denote a tuple type you can write:

The type denoting a tuple of Int32, String and Char
Tuple(Int32, String, Char)

In type restrictions, generic type arguments and other places where a type is
expected, you can use a shorter syntax, as explained in the type grammar:

An array of tuples of Int32, String and Char
Array({Int32, String, Char})

http://crystal-lang.org/api/Tuple.html
https://crystal-lang.org/api/Tuple.html#new%28%2Aargs%3A%2AT%29-class-method

Nil

55

NamedTuple
A NamedTuple is typically created with a named tuple literal:

tuple = {name: "Crystal", year: 2011} # NamedTuple(name: String, year: Int32)
tuple[:name] # => "Crystal" (String)
tuple[:year] # => 2011 (Int32)

To denote a named tuple type you can write:

The type denoting a named tuple of x: Int32, y: String
NamedTuple(x: Int32, y: String)

In type restrictions, generic type arguments and other places where a type is
expected, you can use a shorter syntax, as explained in the type grammar:

An array of named tuples of x: Int32, y: String
Array({x: Int32, y: String})

A named tuple key can also be a string literal:

{"this is a key": 1}

http://crystal-lang.org/api/NamedTuple.html

Nil

56

Proc
A Proc represents a function pointer with an optional context (the closure data). It
is typically created with a proc literal:

A proc without arguments
->{ 1 } # Proc(Int32)

A proc with one argument
->(x : Int32) { x.to_s } # Proc(Int32, String)

A proc with two arguments:
->(x : Int32, y : Int32) { x + y } # Proc(Int32, Int32, Int32)

The types of the arguments are mandatory, except when directly sending a proc
literal to a lib fun in C bindings.

The return type is inferred from the proc's body.

A special new method is provided too:

Proc(Int32, String).new { |x| x.to_s } # Proc(Int32, String)

This form allows you to specify the return type and to check it against the proc's
body.

The Proc type
To denote a Proc type you can write:

A Proc accepting a single Int32 argument and returning a String
Proc(Int32, String)

A proc accepting no arguments and returning Void
Proc(Void)

A proc accepting two arguments (one Int32 and one String) and returning a Char
Proc(Int32, String, Char)

In type restrictions, generic type arguments and other places where a type is
expected, you can use a shorter syntax, as explained in the type:

An array of Proc(Int32, String, Char)
Array(Int32, String -> Char)

Invoking
To invoke a Proc, you invoke the call method on it. The number of arguments
must match the proc's type:

http://crystal-lang.org/api/Proc.html

Nil

57

proc = ->(x : Int32, y : Int32) { x + y }
proc.call(1, 2) # => 3

From methods
A Proc can be created from an existing method:

def one
 1
end

proc = ->one
proc.call # => 1

If the method has arguments, you must specify their types:

def plus_one(x)
 x + 1
end

proc = ->plus_one(Int32)
proc.call(41) # => 42

A proc can optionally specify a receiver:

str = "hello"
proc = ->str.count(Char)
proc.call('e') # => 1
proc.call('l') # => 2

Nil

58

Command literal
A command literal is a string delimited by backticks ̀ or a %x percent literal. It
will be substituted at runtime by the captured output from executing the string in a
subshell.

The same escaping and interpolation rules apply as for regular strings.

Similar to percent string literals, valid delimiters for %x are parentheses () ,
square brackets [] , curly braces {} , angles <> and pipes || . Except for the
pipes, all delimiters can be nested; meaning a start delimiter inside the string
escapes the next end delimiter.

The special variable $? holds the exit status of the command as a
 Process::Status . It is only available in the same scope as the command literal.

`echo foo` # => "foo"
$?.success? # => true

Internally, the compiler rewrites command literals to calls to the top-level method
 ̀ () :String-class-method) with a string literal containing the command as
argument: ̀ echo #{argument}` and %x(echo #{argument}) are rewritten to ̀ ("echo #

{argument}") .

Security concerns
While command literals may prove useful for simple script-like tools, special
caution is advised when interpolating user input because it may easily lead to
command injection.

user_input = "hello; rm -rf *"
`echo #{user_input}`

This command will write hello and subsequently delete all files and folders in the
current working directory.

To avoid this, command literals should generally not be used with interpolated
user input. Process from the standard library offers a safe way to provide user
input as command arguments:

user_input = "hello; rm -rf *"
process = Process.new("echo", [user_input], output: Process::Redirect::Pipe)
process.output.gets_to_end # => "hello; rm -rf *"
process.wait.success? # => true

https://crystal-lang.org/api/0.27.0/Process/Status.html
https://crystal-lang.org/api/latest/toplevel.html#%60(command
https://crystal-lang.org/api/latest/Process.html

Nil

59

Assignment
Assignment is done using the equals sign (=).

Assigns to a local variable
local = 1

Assigns to an instance variable
@instance = 2

Assigns to a class variable
@@class = 3

Each of the above kinds of variables will be explained later on.

Some syntax sugar that contains the = character is available:

local += 1 # same as: local = local + 1

The above is valid with these operators:
+, -, *, /, %, |, &, ^, **, <<, >>

local ||= 1 # same as: local || (local = 1)
local &&= 1 # same as: local && (local = 1)

A method invocation that ends with = has syntax sugar:

A setter
person.name=("John")

The above can be written as:
person.name = "John"

An indexed assignment
objects.[]=(2, 3)

The above can be written as:
objects[2] = 3

Not assignment-related, but also syntax sugar:
objects.[](2, 3)

The above can be written as:
objects[2, 3]

The = operator syntax sugar is also available to setters and indexers. Note that
 || and && use the []? method to check for key presence.

Nil

60

person.age += 1 # same as: person.age = person.age + 1

person.name ||= "John" # same as: person.name || (person.name = "John")
person.name &&= "John" # same as: person.name && (person.name = "John")

objects[1] += 2 # same as: objects[1] = objects[1] + 2

objects[1] ||= 2 # same as: objects[1]? || (objects[1] = 2)
objects[1] &&= 2 # same as: objects[1]? && (objects[1] = 2)

Chained assignment
You can assign the same value to multiple variables using chained assignment:

a = b = c = 123

Now a, b and c have the same value:
a # => 123
b # => 123
c # => 123

The chained assignment is not only available to local variables but also to
instance variables, class variables and setter methods (methods that end with
 =).

Multiple assignment
You can declare/assign multiple variables at the same time by separating
expressions with a comma (,):

name, age = "Crystal", 1

The above is the same as this:
temp1 = "Crystal"
temp2 = 1
name = temp1
age = temp2

Note that because expressions are assigned to temporary variables it is possible
to exchange variables’ contents in a single line:

a = 1
b = 2
a, b = b, a
a # => 2
b # => 1

If the right-hand side contains just one expression, the type is indexed for each
variable on the left-hand side like so:

Nil

61

name, age, source = "Crystal, 123, GitHub".split(", ")

The above is the same as this:
temp = "Crystal, 123, GitHub".split(", ")
name = temp[0]
age = temp[1]
source = temp[2]

Multiple assignment is also available to methods that end with = :

person.name, person.age = "John", 32

Same as:
temp1 = "John"
temp2 = 32
person.name = temp1
person.age = temp2

And it is also available to index assignments ([]=):

objects[1], objects[2] = 3, 4

Same as:
temp1 = 3
temp2 = 4
objects[1] = temp1
objects[2] = temp2

Nil

62

Local variables
Local variables start with lowercase letters. They are declared when you first
assign them a value.

name = "Crystal"
age = 1

Their type is inferred from their usage, not only from their initializer. In general,
they are just value holders associated with the type that the programmer expects
them to have according to their location and usage on the program.

For example, reassigning a variable with a different expression makes it have that
expression’s type:

flower = "Tulip"
At this point 'flower' is a String

flower = 1
At this point 'flower' is an Int32

Underscores are allowed at the beginning of a variable name, but these names
are reserved for the compiler, so their use is not recommended (and it also makes
the code uglier to read).

Nil

63

Control expressions
Before talking about control expressions we need to know what truthy and falsey
values are.

Nil

64

Truthy and falsey values
A truthy value is a value that is considered true for an if , unless , while or
 until guard. A falsey value is a value that is considered false in those places.

The only falsey values are nil , false and null pointers (pointers whose memory
address is zero). Any other value is truthy.

Nil

65

if
An if evaluates the given branch if its condition is truthy. Otherwise, it evaluates
the else branch if present.

a = 1
if a > 0
 a = 10
end
a # => 10

b = 1
if b > 2
 b = 10
else
 b = 20
end
b # => 20

To write a chain of if-else-if you use elsif :

if some_condition
 do_something
elsif some_other_condition
 do_something_else
else
 do_that
end

After an if , a variable’s type depends on the type of the expressions used in
both branches.

a = 1
if some_condition
 a = "hello"
else
 a = true
end
a : String | Bool

b = 1
if some_condition
 b = "hello"
end
b : Int32 | String

if some_condition
 c = 1
else
 c = "hello"
end
c : Int32 | String

if some_condition
 d = 1
end
d : Int32 | Nil

Nil

66

Note that if a variable is declared inside one of the branches but not in the other
one, at the end of the if it will also contain the Nil type.

Inside an if 's branch the type of a variable is the one it got assigned in that
branch, or the one that it had before the branch if it was not reassigned:

a = 1
if some_condition
 a = "hello"
 # a : String
 a.size
end
a : String | Int32

That is, a variable’s type is the type of the last expression(s) assigned to it.

If one of the branches never reaches past the end of an if , like in the case of a
 return , next , break or raise , that type is not considered at the end of the if :

if some_condition
 e = 1
else
 e = "hello"
 # e : String
 return
end
e : Int32

Nil

67

As a suffix
An if can be written as an expression’s suffix:

a = 2 if some_condition

The above is the same as:
if some_condition
 a = 2
end

This sometimes leads to code that is more natural to read.

Nil

68

As an expression
The value of an if is the value of the last expression found in each of its
branches:

a = if 2 > 1
 3
 else
 4
 end
a # => 3

If an if branch is empty, or it’s missing, it’s considered as if it had nil in it:

if 1 > 2
 3
end

The above is the same as:
if 1 > 2
 3
else
 nil
end

Another example:
if 1 > 2
else
 3
end

The above is the same as:
if 1 > 2
 nil
else
 3
end

Nil

69

Ternary if
The ternary if allows writing an if in a shorter way:

a = 1 > 2 ? 3 : 4

The above is the same as:
a = if 1 > 2
 3
 else
 4
 end

Nil

70

if var
If a variable is the condition of an if , inside the then branch the variable will be
considered as not having the Nil type:

a = some_condition ? nil : 3
a is Int32 or Nil

if a
 # Since the only way to get here is if a is truthy,
 # a can't be nil. So here a is Int32.
 a.abs
end

This also applies when a variable is assigned in an if 's condition:

if a = some_expression
 # here a is not nil
end

This logic also applies if there are ands (&&) in the condition:

if a && b
 # here both a and b are guaranteed not to be Nil
end

Here, the right-hand side of the && expression is also guaranteed to have a as
not Nil .

Of course, reassigning a variable inside the then branch makes that variable
have a new type based on the expression assigned.

Limitations
The above logic works only for local variables. It doesn’t work with instance
variables, class variables, or variables bound in a closure. The value of these
kinds of variables could potentially be affected by another fiber after the condition
was checked, rendering it nil . It also does not work with constants.

Nil

71

if @a
 # here `@a` can be nil
end

if @@a
 # here `@@a` can be nil
end

a = nil
closure = ->{ a = "foo" }

if a
 # here `a` can be nil
end

This can be circumvented by assigning the value to a new local variable:

if a = @a
 # here `a` can't be nil
end

Another option is to use Object#try found in the standard library which only
executes the block if the value is not nil :

@a.try do |a|
 # here `a` can't be nil
end

Method calls
That logic also doesn't work with proc and method calls, including getters and
properties, because nilable (or, more generally, union-typed) procs and methods
aren't guaranteed to return the same more-specific type on two successive calls.

if method # first call to a method that can return Int32 or Nil
 # here we know that the first call did not return Nil
 method # second call can still return Int32 or Nil
end

The techniques described above for instance variables will also work for proc and
method calls.

https://crystal-lang.org/api/Object.html#try%28%26block%29-instance-method

Nil

72

if var.is_a?(...)
If an if 's condition is an is_a? test, the type of a variable is guaranteed to be
restricted by that type in the then branch.

if a.is_a?(String)
 # here a is a String
end

if b.is_a?(Number)
 # here b is a Number
end

Additionally, in the else branch the type of the variable is guaranteed to not be
restricted by that type:

a = some_condition ? 1 : "hello"
a : Int32 | String

if a.is_a?(Number)
 # a : Int32
else
 # a : String
end

Note that you can use any type as an is_a? test, like abstract classes and
modules.

The above also works if there are ands (&&) in the condition:

if a.is_a?(String) && b.is_a?(Number)
 # here a is a String and b is a Number
end

The above doesn’t work with instance variables or class variables. To work with
these, first assign them to a variable:

if @a.is_a?(String)
 # here @a is not guaranteed to be a String
end

a = @a
if a.is_a?(String)
 # here a is guaranteed to be a String
end

A bit shorter:
if (a = @a).is_a?(String)
 # here a is guaranteed to be a String
end

Nil

73

if var.responds_to?(...)
If an if 's condition is a responds_to? test, in the then branch the type of a
variable is guaranteed to be restricted to the types that respond to that method:

if a.responds_to?(:abs)
 # here a's type will be reduced to those responding to the 'abs' method
end

Additionally, in the else branch the type of the variable is guaranteed to be
restricted to the types that don’t respond to that method:

a = some_condition ? 1 : "hello"
a : Int32 | String

if a.responds_to?(:abs)
 # here a will be Int32, since Int32#abs exists but String#abs doesn't
else
 # here a will be String
end

The above doesn’t work with instance variables or class variables. To work with
these, first assign them to a variable:

if @a.responds_to?(:abs)
 # here @a is not guaranteed to respond to `abs`
end

a = @a
if a.responds_to?(:abs)
 # here a is guaranteed to respond to `abs`
end

A bit shorter:
if (a = @a).responds_to?(:abs)
 # here a is guaranteed to respond to `abs`
end

Nil

74

if var.nil?
If an if 's condition is var.nil? then the type of var in the then branch is
known by the compiler to be Nil , and to be known as non- Nil in the else
branch:

a = some_condition ? nil : 3
if a.nil?
 # here a is Nil
else
 # here a is Int32
end

Nil

75

if !
The ! operator returns a Bool that results from negating the truthiness of a
value.

When used in an if in conjunction with a variable, is_a? , responds_to? or nil?
the compiler will restrict the types accordingly:

a = some_condition ? nil : 3
if !a
 # here a is Nil because a is falsey in this branch
else
 # here a is Int32, because a is truthy in this branch
end

b = some_condition ? 1 : "x"
if !b.is_a?(Int32)
 # here b is String because it's not an Int32
end

Nil

76

unless
An unless evaluates the then branch if its condition is falsey, and evaluates the
 else branch , if there’s any, otherwise. That is, it behaves in the opposite way of
an if :

unless some_condition
 then_expression
else
 else_expression
end

The above is the same as:
if some_condition
 else_expression
else
 then_expression
end

Can also be written as a suffix
close_door unless door_closed?

Nil

77

case
A case is a control expression which functions a bit like pattern matching. It
allows writing a chain of if-else-if with a small change in semantic and some more
powerful constructs.

In its basic form, it allows matching a value against other values:

case exp
when value1, value2
 do_something
when value3
 do_something_else
else
 do_another_thing
end

The above is the same as:
tmp = exp
if value1 === tmp || value2 === tmp
 do_something
elsif value3 === tmp
 do_something_else
else
 do_another_thing
end

For comparing an expression against a case 's value the case equality operator
 === is used. It is defined as a method on Object and can be overridden by
subclasses to provide meaningful semantics in case statements. For example,
 Class defines case equality as when an object is an instance of that class, Regex
as when the value matches the regular expression and Range as when the value
is included in that range.

If a when 's expression is a type, is_a? is used. Additionally, if the case
expression is a variable or a variable assignment the type of the variable is
restricted:

https://crystal-lang.org/api/Object.html#%3D%3D%3D%28other%29-instance-method
https://crystal-lang.org/api/Class.html#%3D%3D%3D%28other%29-instance-method
https://crystal-lang.org/api/Regex.html#%3D%3D%3D%28other%3AString%29-instance-method
https://crystal-lang.org/api/Range.html#%3D%3D%3D%28value%29-instance-method

Nil

78

case var
when String
 # var : String
 do_something
when Int32
 # var : Int32
 do_something_else
else
 # here var is neither a String nor an Int32
 do_another_thing
end

The above is the same as:
if var.is_a?(String)
 do_something
elsif var.is_a?(Int32)
 do_something_else
else
 do_another_thing
end

You can invoke a method on the case 's expression in a when by using the
implicit-object syntax:

case num
when .even?
 do_something
when .odd?
 do_something_else
end

The above is the same as:
tmp = num
if tmp.even?
 do_something
elsif tmp.odd?
 do_something_else
end

You may use then after the when condition to place the body on a single line.

case exp
when value1, value2 then do_something
when value3 then do_something_else
else do_another_thing
end

Finally, you can omit the case 's value:

Nil

79

case
when cond1, cond2
 do_something
when cond3
 do_something_else
end

The above is the same as:
if cond1 || cond2
 do_something
elsif cond3
 do_something_else
end

This sometimes leads to code that is more natural to read.

Tuple literal
When a case expression is a tuple literal there are a few semantic differences if a
 when condition is also a tuple literal.

Tuple size must match

case {value1, value2}
when {0, 0} # OK, 2 elements
 # ...
when {1, 2, 3} # Syntax error: wrong number of tuple elements (given 3, expected 2)
 # ...
end

Underscore allowed

case {value1, value2}
when {0, _}
 # Matches if 0 === value1, no test done against value2
when {_, 0}
 # Matches if 0 === value2, no test done against value1
end

Implicit-object allowed

case {value1, value2}
when {.even?, .odd?}
 # Matches if value1.even? && value2.odd?
end

Comparing against a type will perform an is_a? check

Nil

80

case {value1, value2}
when {String, Int32}
 # Matches if value1.is_a?(String) && value2.is_a?(Int32)
 # The type of value1 is known to be a String by the compiler,
 # and the type of value2 is known to be an Int32
end

Nil

81

while
A while executes its body as long as its condition is truthy.

while some_condition
 do_this
end

The condition is first tested and, if truthy, the body is executed. That is, the body
might never be executed.

A while 's type is always Nil .

Similar to an if , if a while 's condition is a variable, the variable is guaranteed to
not be nil inside the body. If the condition is an var.is_a?(Type) test, var is
guaranteed to be of type Type inside the body. And if the condition is a
 var.responds_to?(:method) , var is guaranteed to be of a type that responds to that
method.

The type of a variable after a while depends on the type it had before the while
and the type it had before leaving the while 's body:

a = 1
while some_condition
 # a : Int32 | String
 a = "hello"
 # a : String
 a.size
end
a : Int32 | String

Checking the condition at the end of a
loop
If you need to execute the body at least once and then check for a breaking
condition, you can do this:

while true
 do_something
 break if some_condition
end

Or use loop , found in the standard library:

loop do
 do_something
 break if some_condition
end

Nil

82

break
You can use break to break out of a while loop:

a = 2
while (a += 1) < 20
 if a == 10
 break # goes to 'puts a'
 end
end
puts a # => 10

 break can also take a parameter which will then be the value that gets returned:

def foo
 loop do
 break "bar"
 end
end

puts foo # => "bar"

Nil

83

next
You can use next to try to execute the next iteration of a while loop. After
executing next , the while 's condition is checked and, if truthy, the body will be
executed.

a = 1
while a < 5
 a += 1
 if a == 3
 next
 end
 puts a
end

The above prints the numbers 2, 4 and 5

 next can also be used to exit from a block, for example:

def block
 yield
end

block do
 puts "hello"
 next
 puts "world"
end

The above prints "hello"

Similar to break , next can also take a parameter which will then be returned by
 yield .

def block
 puts yield
end

block do
 next "hello"
end

The above prints "hello"

Nil

84

until
An until executes its body until its condition is truthy. An until is just syntax
sugar for a while with the condition negated:

until some_condition
 do_this
end

The above is the same as:
while !some_condition
 do_this
end

 break and next can also be used inside an until .

Nil

85

&& - Logical AND Operator
An && (and) evaluates its left hand side. If it's truthy, it evaluates its right hand
side and has that value. Otherwise it has the value of the left hand side. Its type is
the union of the types of both sides.

You can think an && as syntax sugar of an if :

some_exp1 && some_exp2

The above is the same as:
tmp = some_exp1
if tmp
 some_exp2
else
 tmp
end

Nil

86

|| - Logical OR Operator
An || (or) evaluates its left hand side. If it's falsey, it evaluates its right hand side
and has that value. Otherwise it has the value of the left hand side. Its type is the
union of the types of both sides.

You can think an || as syntax sugar of an if :

some_exp1 || some_exp2

The above is the same as:
tmp = some_exp1
if tmp
 tmp
else
 some_exp2
end

Nil

87

Requiring files
Writing a program in a single file is OK for little snippets and small benchmark
code. Big programs are better maintained and understood when split across
different files.

To make the compiler process other files you use require "..." . It accepts a
single argument, a string literal, and it can come in many flavors.

Once a file is required, the compiler remembers its absolute path and later
 require s of that same file will be ignored.

require "filename"
This looks up "filename" in the require path.

By default the require path is the location of the standard library that comes with
the compiler, and the "lib" directory relative to the current working directory (given
by pwd in a Unix shell). These are the only places that are looked up.

The lookup goes like this:

If a file named "filename.cr" is found in the require path, it is required.
If a directory named "filename" is found and it contains a file named
"filename.cr" directly underneath it, it is required.
If a directory named "filename" is found with a directory "src" in it and it
contains a file named "filename.cr" directly underneath it, it is required.
If a directory named "filename" is found with a directory "src" in it and it
contains a directory named "filename" directly underneath it with a
"filename.cr" file inside it, it is required.
Otherwise a compile-time error is issued.

The second rule means that in addition to having this:

- project
 - src
 - file
 - sub1.cr
 - sub2.cr
 - file.cr (requires "./file/*")

you can have it like this:

- project
 - src
 - file
 - file.cr (requires "./*")
 - sub1.cr
 - sub2.cr

which might be a bit cleaner depending on your taste.

Nil

88

The third rule is very convenient because of the typical directory structure of a
project:

- project
 - lib
 - foo
 - src
 - foo.cr
 - bar
 - src
 - bar.cr
 - src
 - project.cr
 - spec
 - project_spec.cr

That is, inside "lib/{project}" each project's directory exists (src , spec , README.md
and so on)

For example, if you put require "foo" in project.cr and run crystal
src/project.cr in the project's root directory, it will find foo in lib/foo/foo.cr .

The fourth rule is the second rule applied to the third rule.

If you run the compiler from somewhere else, say the src folder, lib will not be
in the path and require "foo" can't be resolved.

require "./filename"
This looks up "filename" relative to the file containing the require expression.

The lookup goes like this:

If a file named "filename.cr" is found relative to the current file, it is required.
If a directory named "filename" is found and it contains a file named
"filename.cr" directly underneath it, it is required.
Otherwise a compile-time error is issued.

This relative is mostly used inside a project to refer to other files inside it. It is also
used to refer to code from specs:

in spec/project_spec.cr
require "../src/project"

Other forms
In both cases you can use nested names and they will be looked up in nested
directories:

 require "foo/bar/baz" will lookup "foo/bar/baz.cr", "foo/bar/baz/baz.cr",
"foo/src/bar/baz.cr" or "foo/src/bar/baz/baz.cr" in the require path.
 require "./foo/bar/baz" will lookup "foo/bar/baz.cr" or "foo/bar/baz/baz.cr"
relative to the current file.

Nil

89

You can also use "../" to access parent directories relative to the current file, so
 require "../../foo/bar" works as well.

In all of these cases you can use the special * and ** suffixes:

 require "foo/*" will require all ".cr" files below the "foo" directory, but not
below directories inside "foo".
 require "foo/**" will require all ".cr" files below the "foo" directory, and below
directories inside "foo", recursively.

Nil

90

Types and methods
The next sections will assume you know what object oriented programming is, as
well as the concepts of classes and methods.

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Class_%28computer_programming%29
http://en.wikipedia.org/wiki/Method_%28computer_programming%29

Nil

91

Everything is an object
In Crystal everything is an object. The definition of an object boils down to these
points:

It has a type
It can respond to some methods

This is everything you can know about an object: its type and whether it responds
to some method.

An object's internal state, if any, can only be queried by invoking methods.

Nil

92

The Program
The program is a global object in which you can define types, methods and file-
local variables.

Defines a method in the program
def add(x, y)
 x + y
end

Invokes the add method in the program
add(1, 2) # => 3

A method's value is the value of its last expression; there's no need for explicit
 return expressions. However, explicit return expressions are possible:

def even?(num)
 if num % 2 == 0
 return true
 end

 return false
end

When invoking a method without a receiver, like add(1, 2) , it will be searched for
in the program if not found in the current type or any of its ancestors.

def add(x, y)
 x + y
end

class Foo
 def bar
 # invokes the program's add method
 add(1, 2)

 # invokes Foo's baz method
 baz(1, 2)
 end

 def baz(x, y)
 x * y
 end
end

If you want to invoke the program's method, even though the current type defines
a method with the same name, prefix the call with :: :

Nil

93

def baz(x, y)
 x + y
end

class Foo
 def bar
 baz(4, 2) # => 2
 ::baz(4, 2) # => 6
 end

 def baz(x, y)
 x - y
 end
end

Variables declared in a program are not visible inside methods:

x = 1

def add(y)
 x + y # error: undefined local variable or method 'x'
end

add(2)

Parentheses in method invocations are optional:

add 1, 2 # same as add(1, 2)

Main code
Main code, the code that is run when you compile and run a program, can be
written directly in a source file without the need to put it in a special "main"
method:

This is a program that prints "Hello Crystal!"
puts "Hello Crystal!"

Main code can also be inside type declarations:

This is a program that prints "Hello"
class Hello
 # 'self' here is the Hello class
 puts self
end

Nil

94

Classes and methods
A class is a blueprint from which individual objects are created. As an example,
consider a Person class. You declare a class like this:

class Person
end

Class names, and indeed all type names, begin with a capital letter in Crystal.

Nil

95

new, initialize and allocate
You create an instance of a class by invoking new on that class:

person = Person.new

Here, person is an instance of Person .

We can't do much with person , so let's add some concepts to it. A Person has a
name and an age. In the "Everything is an object" section we said that an object
has a type and responds to some methods, which is the only way to interact with
objects, so we'll need both name and age methods. We will store this information
in instance variables, which are always prefixed with an at (@) character. We
also want a Person to come into existence with a name of our choice and an age
of zero. We code the "come into existence" part with a special initialize
method, which is normally called a constructor:

class Person
 def initialize(name : String)
 @name = name
 @age = 0
 end

 def name
 @name
 end

 def age
 @age
 end
end

Now we can create people like this:

john = Person.new "John"
peter = Person.new "Peter"

john.name # => "John"
john.age # => 0

peter.name # => "Peter"

(If you wonder why we needed to specify that name is a String but we didn't
need to do it for age , check the global type inference algorithm)

Note that we create a Person with new but we defined the initialization in an
 initialize method, not in a new method. Why is this so?

The answer is that when we defined an initialize method Crystal defined a new
method for us, like this:

Nil

96

class Person
 def self.new(name : String)
 instance = Person.allocate
 instance.initialize(name)
 instance
 end
end

First, note the self.new notation. This is a class method that belongs to the class
 Person , not to particular instances of that class. This is why we can do
 Person.new .

Second, allocate is a low-level class method that creates an uninitialized object
of the given type. It basically allocates the necessary memory for the object, then
 initialize is invoked on it and finally the instance is returned. You generally
never invoke allocate , as it is unsafe, but that's the reason why new and
 initialize are related.

Nil

97

Methods and instance variables
We can simplify our constructor by using a shorter syntax for assigning a method
argument to an instance variable:

class Person
 def initialize(@name : String)
 @age = 0
 end

 def age
 @age
 end
end

Right now, we can't do much with a person aside from create it with a name. Its
age will always be zero. So lets add a method that makes a person become older:

class Person
 def initialize(@name : String)
 @age = 0
 end

 def age
 @age
 end

 def become_older
 @age += 1
 end
end

john = Person.new "John"
peter = Person.new "Peter"

john.age # => 0

john.become_older
john.age # => 1

peter.age # => 0

Method names begin with a lowercase letter and, as a convention, only use
lowercase letters, underscores and numbers.

Getters and setters
The Crystal Standard Library provides macros which simplify the definition of
getter and setter methods:

https://crystal-lang.org/api

Nil

98

class Person
 property age
 getter name : String

 def initialize(@name)
 @age = 0
 end
end

john = Person.new "John"
john.age = 32
john.age # => 32

For more information on getter and setter macros, see the standard library
documentation for Object#getter, Object#setter, and Object#property.

As a side note, we can define become_older inside the original Person definition,
or in a separate definition: Crystal combines all definitions into a single class. The
following works just fine:

class Person
 def initialize(@name : String)
 @age = 0
 end
end

class Person
 def become_older
 @age += 1
 end
end

Redefining methods, and previous_def
If you redefine a method, the last definition will take precedence.

class Person
 def become_older
 @age += 1
 end
end

class Person
 def become_older
 @age += 2
 end
end

person = Person.new "John"
person.become_older
person.age # => 2

You can invoke the previously redefined method with previous_def :

https://crystal-lang.org/api/latest/Object.html#getter%28%2Anames%2C%26block%29-macro
https://crystal-lang.org/api/latest/Object.html#setter%28%2Anames%29-macro
https://crystal-lang.org/api/latest/Object.html#property%28%2Anames%2C%26block%29-macro

Nil

99

class Person
 def become_older
 @age += 1
 end
end

class Person
 def become_older
 previous_def
 @age += 2
 end
end

person = Person.new "John"
person.become_older
person.age # => 3

Without arguments or parentheses, previous_def receives the same arguments
as the method's arguments. Otherwise, it receives the arguments you pass to it.

Catch-all initialization
Instance variables can also be initialized outside initialize methods:

class Person
 @age = 0

 def initialize(@name : String)
 end
end

This will initialize @age to zero in every constructor. This is useful to avoid
duplication, but also to avoid the Nil type when reopening a class and adding
instance variables to it.

Nil

100

Type inference
Crystal's philosophy is to require as few type restrictions as possible. However,
some restrictions are required.

Consider a class definition like this:

class Person
 def initialize(@name)
 @age = 0
 end
end

We can quickly see that @age is an integer, but we don't know the type of @name .
The compiler could infer its type from all uses of the Person class. However,
doing so has a few issues:

The type is not obvious for a human reading the code: they would also have
to check all uses of Person to find this out.
Some compiler optimizations, like having to analyze a method just once, and
incremental compilation, are nearly impossible to do.

As a code base grows, these issues gain more relevance: understanding a project
becomes harder, and compile times become unbearable.

For this reason, Crystal needs to know, in an obvious way (as obvious as to a
human), the types of instance and class variables.

There are several ways to let Crystal know this.

With type restrictions
The easiest, but probably most tedious, way is to use explicit type restrictions.

class Person
 @name : String
 @age : Int32

 def initialize(@name)
 @age = 0
 end
end

Without type restrictions
If you omit an explicit type restriction, the compiler will try to infer the type of
instance and class variables using a bunch of syntactic rules.

For a given instance/class variable, when a rule can be applied and a type can be
guessed, the type is added to a set. When no more rules can be applied, the
inferred type will be the union of those types. Additionally, if the compiler infers

Nil

101

that an instance variable isn't always initialized, it will also include the Nil type.

The rules are many, but usually the first three are most used. There's no need to
remember them all. If the compiler gives an error saying that the type of an
instance variable can't be inferred you can always add an explicit type restriction.

The following rules only mention instance variables, but they apply to class
variables as well. They are:

1. Assigning a literal value

When a literal is assigned to an instance variable, the literal's type is added to the
set. All literals have an associated type.

In the following example, @name is inferred to be String and @age to be Int32 .

class Person
 def initialize
 @name = "John Doe"
 @age = 0
 end
end

This rule, and every following rule, will also be applied in methods other than
 initialize . For example:

class SomeObject
 def lucky_number
 @lucky_number = 42
 end
end

In the above case, @lucky_number will be inferred to be Int32 | Nil : Int32
because 42 was assigned to it, and Nil because it wasn't assigned in all of the
class' initialize methods.

2. Assigning the result of invoking the class method
 new

When an expression like Type.new(...) is assigned to an instance variable, the
type Type is added to the set.

In the following example, @address is inferred to be Address .

class Person
 def initialize
 @address = Address.new("somewhere")
 end
end

This also is applied to generic types. Here @values is inferred to be Array(Int32) .

Nil

102

class Something
 def initialize
 @values = Array(Int32).new
 end
end

Note: a new method might be redefined by a type. In that case the inferred type
will be the one returned by new , if it can be inferred using some of the next rules.

3. Assigning a variable that is a method argument
with a type restriction

In the following example @name is inferred to be String because the method
argument name has a type restriction of type String , and that argument is
assigned to @name .

class Person
 def initialize(name : String)
 @name = name
 end
end

Note that the name of the method argument is not important; this works as well:

class Person
 def initialize(obj : String)
 @name = obj
 end
end

Using the shorter syntax to assign an instance variable from a method argument
has the same effect:

class Person
 def initialize(@name : String)
 end
end

Also note that the compiler doesn't check whether a method argument is
reassigned a different value:

class Person
 def initialize(name : String)
 name = 1
 @name = name
 end
end

In the above case, the compiler will still infer @name to be String , and later will
give a compile time error, when fully typing that method, saying that Int32 can't
be assigned to a variable of type String . Use an explicit type restriction if @name
isn't supposed to be a String .

Nil

103

4. Assigning the result of a class method that has a
return type restriction

In the following example, @address is inferred to be Address , because the class
method Address.unknown has a return type restriction of Address .

class Person
 def initialize
 @address = Address.unknown
 end
end

class Address
 def self.unknown : Address
 new("unknown")
 end

 def initialize(@name : String)
 end
end

In fact, the above code doesn't need the return type restriction in self.unknown .
The reason is that the compiler will also look at a class method's body and if it can
apply one of the previous rules (it's a new method, or it's a literal, etc.) it will infer
the type from that expression. So, the above can be simply written like this:

class Person
 def initialize
 @address = Address.unknown
 end
end

class Address
 # No need for a return type restriction here
 def self.unknown
 new("unknown")
 end

 def initialize(@name : String)
 end
end

This extra rule is very convenient because it's very common to have "constructor-
like" class methods in addition to new .

5. Assigning a variable that is a method argument
with a default value

In the following example, because the default value of name is a string literal, and
it's later assigned to @name , String will be added to the set of inferred types.

class Person
 def initialize(name = "John Doe")
 @name = name
 end
end

Nil

104

This of course also works with the short syntax:

class Person
 def initialize(@name = "John Doe")
 end
end

The default value can also be a Type.new(...) method or a class method with a
return type restriction.

6. Assigning the result of invoking a lib function

Because a lib function must have explicit types, the compiler can use the return
type when assigning it to an instance variable.

In the following example @age is inferred to be Int32 .

class Person
 def initialize
 @age = LibPerson.compute_default_age
 end
end

lib LibPerson
 fun compute_default_age : Int32
end

7. Using an out lib expression

Because a lib function must have explicit types, the compiler can use the out
argument's type, which should be a pointer type, and use the dereferenced type
as a guess.

In the following example @age is inferred to be Int32 .

class Person
 def initialize
 LibPerson.compute_default_age(out @age)
 end
end

lib LibPerson
 fun compute_default_age(age_ptr : Int32*)
end

Other rules

The compiler will try to be as smart as possible to require less explicit type
restrictions. For example, if assigning an if expression, type will be inferred
from the then and else branches:

Nil

105

class Person
 def initialize
 @age = some_condition ? 1 : 2
 end
end

Because the if above (well, technically a ternary operator, but it's similar to an
 if) has integer literals, @age is successfully inferred to be Int32 without
requiring a redundant type restriction.

Another case is || and ||= :

class SomeObject
 def lucky_number
 @lucky_number ||= 42
 end
end

In the above example @lucky_number will be inferred to be Int32 | Nil . This is
very useful for lazily initialized variables.

Constants will also be followed, as it's pretty simple for the compiler (and a
human) to do so.

class SomeObject
 DEFAULT_LUCKY_NUMBER = 42

 def initialize(@lucky_number = DEFAULT_LUCKY_NUMBER)
 end
end

Here rule 5 (argument's default value) is used, and because the constant resolves
to an integer literal, @lucky_number is inferred to be Int32 .

Nil

106

Union types
The type of a variable or expression can consist of multiple types. This is called a
union type. For example, when assigning to a same variable inside different if
branches:

if 1 + 2 == 3
 a = 1
else
 a = "hello"
end

a # : Int32 | String

At the end of the if, a will have the Int32 | String type, read "the union of Int32
and String". This union type is created automatically by the compiler. At runtime,
 a will of course be of one type only. This can be seen by invoking the class
method:

The runtime type
a.class # => Int32

The compile-time type can be seen by using typeof:

The compile-time type
typeof(a) # => Int32 | String

A union can consist of an arbitrary large number of types. When invoking a
method on an expression whose type is a union type, all types in the union must
respond to the method, otherwise a compile-time error is given. The type of the
method call is the union type of the return types of those methods.

to_s is defined for Int32 and String, it returns String
a.to_s # => String

a + 1 # Error, because String#+(Int32) isn't defined

If necessary a variable can be defined as a union type at compile time

set the compile-time type
a = 0.as(Int32 | Nil | String)
typeof(a) # => Int32 | Nil | String

Union types rules
In the general case, when two types T1 and T2 are combined, the result is a
union T1 | T2 . However, there are a few cases where the resulting type is a
different type.

Nil

107

Union of classes and structs under the same
hierarchy

If T1 and T2 are under the same hierarchy, and their nearest common ancestor
 Parent is not Reference , Struct , Int , Float nor Value , the resulting type is
 Parent+ . This is called a virtual type, which basically means the compiler will now
see the type as being Parent or any of its subtypes.

For example:

class Foo
end

class Bar < Foo
end

class Baz < Foo
end

bar = Bar.new
baz = Baz.new

Here foo's type will be Bar | Baz,
but because both Bar and Baz inherit from Foo,
the resulting type is Foo+
foo = rand < 0.5 ? bar : baz
typeof(foo) # => Foo+

Union of tuples of the same size

The union of two tuples of the same size results in a tuple type that has the union
of the types in each position.

For example:

t1 = {1, "hi"} # Tuple(Int32, String)
t2 = {true, nil} # Tuple(Bool, Nil)

t3 = rand < 0.5 ? t1 : t2
typeof(t3) # Tuple(Int32 | Bool, String | Nil)

Union of named tuples with the same keys

The union of two named tuples with the same keys (regardless of their order)
results in a named tuple type that has the union of the types in each key. The
order of the keys will be the ones from the tuple on the left hand side.

For example:

t1 = {x: 1, y: "hi"} # Tuple(x: Int32, y: String)
t2 = {y: true, x: nil} # Tuple(y: Bool, x: Nil)

t3 = rand < 0.5 ? t1 : t2
typeof(t3) # NamedTuple(x: Int32 | Nil, y: String | Bool)

Nil

108

Overloading
We can define a become_older method that accepts a number indicating the years
to grow:

class Person
 getter :age

 def initialize(@name : String, @age : Int = 0)
 end

 def become_older
 @age += 1
 end

 def become_older(years)
 @age += years
 end
end

john = Person.new "John"
john.age # => 0

john.become_older
john.age # => 1

john.become_older 5
john.age # => 6

That is, you can have different methods with the same name and different number
of arguments and they will be considered as separate methods. This is called
method overloading.

Methods overload by several criteria:

The number of arguments
The type restrictions applied to arguments
The names of required named arguments
Whether the method accepts a block or not

For example, we can define four different become_older methods:

Nil

109

class Person
 @age = 0

 # Increases age by one
 def become_older
 @age += 1
 end

 # Increases age by the given number of years
 def become_older(years : Int32)
 @age += years
 end

 # Increases age by the given number of years, as a String
 def become_older(years : String)
 @age += years.to_i
 end

 # Yields the current age of this person and increases
 # its age by the value returned by the block
 def become_older
 @age += yield @age
 end
end

person = Person.new "John"

person.become_older
person.age # => 1

person.become_older 5
person.age # => 6

person.become_older "12"
person.age # => 18

person.become_older do |current_age|
 current_age < 20 ? 10 : 30
end
person.age # => 28

Note that in the case of the method that yields, the compiler figured this out
because there's a yield expression. To make this more explicit, you can add a
dummy &block argument at the end:

class Person
 @age = 0

 def become_older(&block)
 @age += yield @age
 end
end

In generated documentation the dummy &block method will always appear,
regardless of you writing it or not.

Given the same number of arguments, the compiler will try to sort them by leaving
the less restrictive ones to the end:

Nil

110

class Person
 @age = 0

 # First, this method is defined
 def become_older(age)
 @age += age
 end

 # Since "String" is more restrictive than no restriction
 # at all, the compiler puts this method before the previous
 # one when considering which overload matches.
 def become_older(age : String)
 @age += age.to_i
 end
end

person = Person.new "John"

Invokes the first definition
person.become_older 20

Invokes the second definition
person.become_older "12"

However, the compiler cannot always figure out the order because there isn't
always a total ordering, so it's always better to put less restrictive methods at the
end.

Nil

111

Default values
A method can specify default values for the last arguments:

class Person
 def become_older(by = 1)
 @age += by
 end
end

john = Person.new "John"
john.age # => 0

john.become_older
john.age # => 1

john.become_older 2
john.age # => 3

Named arguments
All arguments can also be specified, in addition to their position, by their name.
For example:

john.become_older by: 5

When there are many arguments, the order of the names in the invocation doesn't
matter, as long as all required arguments are covered:

def some_method(x, y = 1, z = 2, w = 3)
 # do something...
end

some_method 10 # x: 10, y: 1, z: 2, w: 3
some_method 10, z: 10 # x: 10, y: 1, z: 10, w: 3
some_method 10, w: 1, y: 2, z: 3 # x: 10, y: 2, z: 3, w: 1
some_method y: 10, x: 20 # x: 20, y: 10, z: 2, w: 3

some_method y: 10 # Error, missing argument: x

When a method specifies a splat (explained in the next section), named
arguments can't be used. The reason is that understanding how arguments are
matched becomes very difficult; positional arguments are easier to reason about
in this case.

Nil

112

Splats and tuples
A method can receive a variable number of arguments by using a splat (*),
which can appear only once and in any position:

def sum(*elements)
 total = 0
 elements.each do |value|
 total += value
 end
 total
end

sum 1, 2, 3 # => 6
sum 1, 2, 3, 4.5 # => 10.5

The passed arguments become a Tuple in the method's body:

elements is Tuple(Int32, Int32, Int32)
sum 1, 2, 3

elements is Tuple(Int32, Int32, Int32, Float64)
sum 1, 2, 3, 4.5

Arguments past the splat argument can only be passed as named arguments:

def sum(*elements, initial = 0)
 total = initial
 elements.each do |value|
 total += value
 end
 total
end

sum 1, 2, 3 # => 6
sum 1, 2, 3, initial: 10 # => 16

Arguments past the splat method without a default value are required named
arguments:

def sum(*elements, initial)
 total = initial
 elements.each do |value|
 total += value
 end
 total
end

sum 1, 2, 3 # Error, missing argument: initial
sum 1, 2, 3, initial: 10 # => 16

Two methods with different required named arguments overload between each
other:

http://crystal-lang.org/api/Tuple.html

Nil

113

def foo(*elements, x)
 1
end

def foo(*elements, y)
 2
end

foo x: "something" # => 1
foo y: "something" # => 2

The splat argument can also be left unnamed, with the meaning "after this, named
arguments follow":

def foo(x, y, *, z)
end

foo 1, 2, 3 # Error, wrong number of arguments (given 3, expected 2)
foo 1, 2 # Error, missing argument: z
foo 1, 2, z: 3 # OK

Splatting a tuple
A Tuple can be splat into a method call by using * :

def foo(x, y)
 x + y
end

tuple = {1, 2}
foo *tuple # => 3

Double splats and named tuples
A double splat (**) captures named arguments that were not matched by other
arguments. The type of the argument is a NamedTuple :

def foo(x, **other)
 # Return the captured named arguments as a NamedTuple
 other
end

foo 1, y: 2, z: 3 # => {y: 2, z: 3}
foo y: 2, x: 1, z: 3 # => {y: 2, z: 3}

Double splatting a named tuple
A NamedTuple can be splat into a method call by using ** :

Nil

114

def foo(x, y)
 x - y
end

tuple = {y: 3, x: 10}
foo **tuple # => 7

Nil

115

Type restrictions
Type restrictions are applied to method arguments to restrict the types accepted
by that method.

def add(x : Number, y : Number)
 x + y
end

Ok
add 1, 2

Error: no overload matches 'add' with types Bool, Bool
add true, false

Note that if we had defined add without type restrictions, we would also have
gotten a compile time error:

def add(x, y)
 x + y
end

add true, false

The above code gives this compile error:

Error in foo.cr:6: instantiating 'add(Bool, Bool)'

add true, false
^~~

in foo.cr:2: undefined method '+' for Bool

 x + y
 ^

This is because when you invoke add , it is instantiated with the types of the
arguments: every method invocation with a different type combination results in a
different method instantiation.

The only difference is that the first error message is a little more clear, but both
definitions are safe in that you will get a compile time error anyway. So, in
general, it's preferable not to specify type restrictions and almost only use them to
define different method overloads. This results in more generic, reusable code.
For example, if we define a class that has a + method but isn't a Number , we can
use the add method that doesn't have type restrictions, but we can't use the add
method that has restrictions.

Nil

116

A class that has a + method but isn't a Number
class Six
 def +(other)
 6 + other
 end
end

add method without type restrictions
def add(x, y)
 x + y
end

OK
add Six.new, 10

add method with type restrictions
def restricted_add(x : Number, y : Number)
 x + y
end

Error: no overload matches 'restricted_add' with types Six, Int32
restricted_add Six.new, 10

Refer to the type grammar for the notation used in type restrictions.

Note that type restrictions do not apply to the variables inside the actual methods.

def handle_path(path : String)
 path = Path.new(path) # *path* is now of the type Path
 # Do something with *path*
end

self restriction
A special type restriction is self :

class Person
 def ==(other : self)
 other.name == name
 end

 def ==(other)
 false
 end
end

john = Person.new "John"
another_john = Person.new "John"
peter = Person.new "Peter"

john == another_john # => true
john == peter # => false (names differ)
john == 1 # => false (because 1 is not a Person)

In the previous example self is the same as writing Person . But, in general,
 self is the same as writing the type that will finally own that method, which,
when modules are involved, becomes more useful.

Nil

117

As a side note, since Person inherits Reference the second definition of == is not
needed, since it's already defined in Reference .

Note that self always represents a match against an instance type, even in
class methods:

class Person
 getter name : String

 def initialize(@name)
 end

 def self.compare(p1 : self, p2 : self)
 p1.name == p2.name
 end
end

john = Person.new "John"
peter = Person.new "Peter"

Person.compare(john, peter) # OK

You can use self.class to restrict to the Person type. The next section talks
about the .class suffix in type restrictions.

Classes as restrictions
Using, for example, Int32 as a type restriction makes the method only accept
instances of Int32 :

def foo(x : Int32)
end

foo 1 # OK
foo "hello" # Error

If you want a method to only accept the type Int32 (not instances of it), you use
 .class :

def foo(x : Int32.class)
end

foo Int32 # OK
foo String # Error

The above is useful for providing overloads based on types, not instances:

Nil

118

def foo(x : Int32.class)
 puts "Got Int32"
end

def foo(x : String.class)
 puts "Got String"
end

foo Int32 # prints "Got Int32"
foo String # prints "Got String"

Type restrictions in splats
You can specify type restrictions in splats:

def foo(*args : Int32)
end

def foo(*args : String)
end

foo 1, 2, 3 # OK, invokes first overload
foo "a", "b", "c" # OK, invokes second overload
foo 1, 2, "hello" # Error
foo() # Error

When specifying a type, all elements in a tuple must match that type. Additionally,
the empty-tuple doesn't match any of the above cases. If you want to support the
empty-tuple case, add another overload:

def foo
 # This is the empty-tuple case
end

A simple way to match against one or more elements of any type is to use Object
as a restriction:

def foo(*args : Object)
end

foo() # Error
foo(1) # OK
foo(1, "x") # OK

Free variables
You can make a type restriction take the type of an argument, or part of the type
of an argument, using forall :

Nil

119

def foo(x : T) forall T
 T
end

foo(1) # => Int32
foo("hello") # => String

That is, T becomes the type that was effectively used to instantiate the method.

A free variable can be used to extract the type parameter of a generic type within
a type restriction:

def foo(x : Array(T)) forall T
 T
end

foo([1, 2]) # => Int32
foo([1, "a"]) # => (Int32 | String)

To create a method that accepts a type name, rather than an instance of a type,
append .class to a free variable in the type restriction:

def foo(x : T.class) forall T
 Array(T)
end

foo(Int32) # => Array(Int32)
foo(String) # => Array(String)

Multiple free variables can be specified too, for matching types of multiple
arguments:

def push(element : T, array : Array(T)) forall T
 array << element
end

push(4, [1, 2, 3]) # OK
push("oops", [1, 2, 3]) # Error

Nil

120

Return types
A method's return type is always inferred by the compiler. However, you might
want to specify it for two reasons:

1. To make sure that the method returns the type that you want
2. To make it appear in documentation comments

For example:

def some_method : String
 "hello"
end

The return type follows the type grammar.

Nil return type
Marking a method as returning Nil will make it return nil regardless of what it
actually returns:

def some_method : Nil
 1 + 2
end

some_method # => nil

This is useful for two reasons:

1. Making sure a method returns nil without needing to add an extra nil at
the end, or at every return point

2. Documenting that the method's return value is of no interest

These methods usually imply a side effect.

Using Void is the same, but Nil is more idiomatic: Void is preferred in C
bindings.

NoReturn return type
Some expressions won't return to the current scope and therefore have no return
type. This is expressed as the special return type NoReturn .

Typical examples for non-returning methods and keywords are return , exit ,
 raise , next , and break .

This is for example useful for deconstructing union types:

Nil

121

string = STDIN.gets
typeof(string) # => String?
typeof(raise "Empty input") # => NoReturn
typeof(string || raise "Empty input") # => String

The compiler recognizes that in case string is Nil , the right hand side of the
expression string || raise will be evaluated. Since typeof(raise "Empty input") is
 NoReturn the execution would not return to the current scope in that case. That
leaves only String as resulting type of the expression.

Every expression whose code paths all result in NoReturn will be NoReturn as
well. NoReturn does not show up in a union type because it would essentially be
included in every expression's type. It is only used when an expression will never
return to the current scope.

 NoReturn can be explicitly set as return type of a method or function definition but
will usually be inferred by the compiler.

Nil

122

Method arguments
This is the formal specification of method and call arguments.

Components of a method definition
A method definition consists of:

required and optional positional arguments
an optional splat argument, whose name can be empty
required and optional named arguments
an optional double splat argument

For example:

def foo(
 # These are positional arguments:
 x, y, z = 1,
 # This is the splat argument:
 *args,
 # These are the named arguments:
 a, b, c = 2,
 # This is the double splat argument:
 **options
)
end

Each one of them is optional, so a method can do without the double splat,
without the splat, without keyword arguments and without positional arguments.

Components of a method call
A method call also has some parts:

foo(
 # These are positional arguments
 1, 2,
 # These are named arguments
 a: 1, b: 2
)

Additionally, a call argument can have a splat (*) or double splat (**). A splat
expands a Tuple into positional arguments, while a double splat expands a
NamedTuple into named arguments. Multiple argument splats and double splats
are allowed.

How call arguments are matched to
method arguments

Nil

123

When invoking a method, the algorithm to match call arguments to method
arguments is:

First positional arguments are matched with positional method arguments.
The number of these must be at least the number of positional arguments
without a default value. If there's a splat method argument with a name (the
case without a name is explained below), more positional arguments are
allowed and they are captured as a tuple. Positional arguments never match
past the splat method argument.
Then named arguments are matched, by name, with any argument in the
method (it can be before or after the splat method argument). If an argument
was already filled by a positional argument then it's an error.
Extra named arguments are placed in the double splat method argument, as
a NamedTuple, if it exists, otherwise it's an error.

When a splat method argument has no name, it means no more positional
arguments can be passed, and next arguments must be passed as named
arguments. For example:

Only one positional argument allowed, y must be passed as a named argument
def foo(x, *, y)
end

foo 1 # Error, missing argument: y
foo 1, 2 # Error: wrong number of arguments (given 2, expected 1)
foo 1, y: 10 # OK

But even if a splat method argument has a name, arguments that follow it must be
passed as named arguments:

One or more positional argument allowed, y must be passed as a named argument
def foo(x, *args, y)
end

foo 1 # Error, missing argument: y
foo 1, 2 # Error: missing argument; y
foo 1, 2, 3 # Error: missing argument: y
foo 1, y: 10 # OK
foo 1, 2, 3, y: 4 # OK

There's also the possibility of making a method only receive named arguments
(and list them), by placing the star at the beginning:

A method with two required named arguments: x and y
def foo(*, x, y)
end

foo # Error: missing arguments: x, y
foo x: 1 # Error: missing argument: y
foo x: 1, y: 2 # OK

Arguments past the star can also have default values. It means: they must be
passed as named arguments, but they aren't required (so: optional named
arguments):

Nil

124

A method with two required named arguments: x and y
def foo(*, x, y = 2)
end

foo # Error: missing argument: x
foo x: 1 # OK, y is 2
foo x: 1, y: 3 # OK, y is 3

Because arguments (without a default value) after the splat method argument
must be passed by name, two methods with different required named arguments
overload:

def foo(*, x)
 puts "Passed with x: #{x}"
end

def foo(*, y)
 puts "Passed with y: #{y}"
end

foo x: 1 # => Passed with x: 1
foo y: 2 # => Passed with y: 2

Positional arguments can always be matched by name:

def foo(x, *, y)
end

foo 1, y: 2 # OK
foo y: 2, x: 3 # OK

External names
An external name can be specified for a method argument. The external name is
the one used when passing an argument as a named argument, and the internal
name is the one used inside the method definition:

def foo(external_name internal_name)
 # here we use internal_name
end

foo external_name: 1

This covers two uses cases.

The first use case is using keywords as named arguments:

def plan(begin begin_time, end end_time)
 puts "Planning between #{begin_time} and #{end_time}"
end

plan begin: Time.now, end: 2.days.from_now

Nil

125

The second use case is making a method argument more readable inside a
method body:

def increment(value, by)
 # OK, but reads odd
 value + by
end

def increment(value, by amount)
 # Better
 value + amount
end

Nil

126

Operators
Crystal supports a number of operators, with one, two or three operands.

Operator expressions are actually parsed as method calls. For example a + b is
semantically equivalent to a.+(b) , a call to method + on a with argument b .

There are however some special rules regarding operator syntax:

The dot (.) usually put between receiver and method name (i.e. the
operator) can be omitted.
Chained sequences of operator calls are restructured by the compiler in order
to implement operator precedence. Enforcing operator precedence makes
sure that an expression such as 1 * 2 + 3 * 4 is parsed as (1 * 2) + (2 *
3) to honour regular math rules.
Regular method names must start with a letter or underscore, but operators
only consist of special characters. Any method not starting with a letter or
underscore is an operator method.
Available operators are whitelisted in the compiler (see List of Operators
below) which allows symbol-only method names and treats them as
operators, including their precedence rules.

Operators are implemented like any regular method, and the standard library
offers many implementations, for example for math expressions.

Defining operator methods
Most operators can be implemented as regular methods.

One can assign any meaning to the operators, but it is advisable to stay within
similar semantics to the generic operator meaning to avoid cryptic code that is
confusing and behaves unexpectedly.

A few operators are defined directly by the compiler and cannot be redefined in
user code. Examples for this are the inversion operator ! , the assignment
operator = , combined assignment operators such as ||= and range operators.
Whether a method can be redefined is indicated by the colum Overloadable in the
below operator tables.

Unary operators

Unary operators are written in prefix notation and have only a single operand.
Thus, a method implementation receives no arguments and only operates on
 self .

The following example demonstrates the Vector2 type as a two-dimensional
vector with a unary operator method - for vector inversion.

Nil

127

struct Vector2
 getter x, y

 def initialize(@x : Int32, @y : Int32)
 end

 # Unary operator. Returns the inverted vector to `self`.
 def - : self
 Vector2.new(-x, -y)
 end
end

v1 = Vector2.new(1, 2)
-v1 # => Vector2(@x=-1, @y=-2)

Binary operators
Binary operators have two operands. Thus, a method implementation receives
exactly one argument representing the second operand. The first operand is the
receiver self .

The following example demonstrates the Vector2 type as a two-dimensional
vector with a binary operator method + for vector addition.

struct Vector2
 getter x, y

 def initialize(@x : Int32, @y : Int32)
 end

 # Binary operator. Returns *other* added to `self`.
 def +(other : self) : self
 Vector2.new(x + other.x, y + other.y)
 end
end

v1 = Vector2.new(1, 2)
v2 = Vector2.new(3, 4)
v1 + v2 # => Vector2(@x=4, @y=6)

Per convention, the return type of a binary operator should be the type of the first
operand (the receiver), so that typeof(a <op> b) == typeof(a) . Otherwise the
assignment operator (a <op>= b) would unintentionally change the type of a .
There can be reasonable exceptions though. For example in the standard library
the float division operator / on integer types always returns Float64 , because
the quotient must not be limited to the value range of integers.

Ternary operators
The conditional operator (? :) is the only ternary operator. It not parsed as a
method, and its meaning cannot be changed. The compiler transforms it to an if
expression.

Nil

128

Operator Precedence
This list is sorted by precedence, so upper entries bind stronger than lower ones.

Category Operators

Index
accessors [] , []?

Unary + , &+ , - , &- , ! , ~ , * , **

Exponential ** , &**

Multiplicative * , &* , / , // , %

Additive + , &+ , - , &-

Shift << , >>

Binary AND &

Binary
OR/XOR | , ̂

Equality == , != , =~ , !~ , ===

Comparison < , <= , > , >= , <=>

Logical AND &&

Logical OR ||

Range .. , ...

Conditional ?:

Assignment = , []= , += , &+= , -= , &-= , *= , &*= , /= , //= , %= ,
 |= , &= , ̂ = , **= , <<= , >>= , ||= , &&=

List of operators

Arithmetic operators

Unary

Operator Description Example Overloadable

 + positive +1 yes

 &+ wrapping positive &+1 yes

 - negative -1 yes

 &- wrapping negative &-1 yes

Multiplicative

Nil

129

Operator Description Example Overloadable

 ** exponentiation 1 ** 2 yes

 &** wrapping exponentiation 1 &** 2 yes

 * multiplication 1 * 2 yes

 &* wrapping multiplication 1 &* 2 yes

 / division 1 / 2 yes

 // floor division 1 // 2 yes

 % modulus 1 % 2 yes

Additive

Operator Description Example Overloadable

 + addition 1 + 2 yes

 &+ wrapping addition 1 &+ 2 yes

 - subtraction 1 - 2 yes

 &- wrapping subtraction 1 &- 2 yes

Other unary operators

Operator Description Example Overloadable

 ! inversion !true no

 ~ binary complement ~1 yes

Shifts

Operator Description Example Overloadable

 << shift left,
append

 1 << 2 , STDOUT <<
"foo" yes

 >> shift right 1 >> 2 yes

Binary

Operator Description Example Overloadable

 & binary AND 1 & 2 yes

 | binary OR 1 | 2 yes

 ̂ binary XOR 1 ^ 2 yes

Equality

Three base operators test equality:

Nil

130

 == : Checks whether the values of the operands are equal
 =~ : Checks whether the value of the first operand matches the value of the
second operand with pattern matching.
 === : Checks whether the left hand operand matches the right hand operand
in case equality. This operator is applied in case ... when conditions.

The first two operators also have inversion operators (!= and !~) whose
semantical intention is just the inverse of the base operator: a != b is supposed
to be equivalent to !(a == b) and a !~ b to !(a =~ b) . Nevertheless, these
inversions can be defined with a custom implementation. This can be useful for
example to improve performance (non-equality can often be proven faster than
equality).

Operator Description Example Overloadable

 == equals 1 == 2 yes

 != not equals 1 != 2 yes

 =~ pattern match "foo" =~ /fo/ yes

 !~ no pattern match "foo" !~ /fo/ yes

 === case equality /foo/ === "foo" yes

Comparison

Operator Description Example Overloadable

 < less 1 < 2 yes

 <= less or equal 1 <= 2 yes

 > greater 1 > 2 yes

 >= greater or equal 1 >= 2 yes

 <=> comparison 1 <=> 2 yes

Logical

Operator Description Example Overloadable

 && logical AND true && false no

 || logical OR true || false no

Range

The range operators are used in Range literals.

Operator Description Example Overloadable

 .. range 1..10 no

 ... exclusive range 1...10 no

Nil

131

Splats

Splat operators can only be used for destructing tuples in method arguments. See
Splats and Tuples for details.

Operator Description Example Overloadable

 * splat *foo no

 ** double splat **foo no

Conditional

The conditional operator (? :) is internally rewritten to an if expression by the
compiler.

Operator Description Example Overloadable

 ? : conditional a == b ? c : d no

Assignments

The assignment operator = assigns the value of the second operand to the first
operand. The first operand is either a variable (in this case the operator can't be
redefined) or a call (in this case the operator can be redefined). See assignment
for details.

Operator Description Example Overloadable

 = variable assignment a = 1 no

 = call assignment a.b = 1 yes

 []= index assignment a[0] = 1 yes

Combined assignments

The assignment operator = is the basis for all operators that combine an
operator with assignment. The general form is a <op>= b and the compiler
transform that into a = a <op> b .

Exceptions to the general expansion formula are the logical operators:

 a ||= b transforms to a || (a = b)
 a &&= b transforms to a && (a = b)

There is another special case when a is an index accessor ([]), it is changed
to the nilable variant ([]? on the right hand side:

 a[i] ||= b transforms to a[i] = (a[i]? || b)
 a[i] &&= b transforms to a[i] = (a[i]? && b)

All transformations assume the receiver (a) is a variable. If it is a call, the
replacements are semantically equivalent but the implementation is a bit more
complex (introducing an anonymous temporary variable) and expects a= to be

Nil

132

callable.

The receiver can't be anything else than a variable or call.

Operator Description Example Overloadable

 += addition and assignment i += 1 no

 &+= wrapping addition and
assignment

 i &+= 1 no

 -= subtraction and assignment i -= 1 no

 &-= wrapping subtraction and
assignment

 i &-= 1 no

 *= multiplication and
assignment

 i *= 1 no

 &*= wrapping multiplication and
assignment

 i &*= 1 no

 /= division and assignment i /= 1 no

 //= floor division and
assignment

 i //= 1 no

 %= modulo and assignment i %= 1 yes

 |= binary or and assignment i |= 1 no

 &= binary and and assignment i &= 1 no

 ̂ = binary xor and assignment i ^= 1 no

 **= exponential and
assignment

 i **= 1 no

 <<= left shift and assignment i <<= 1 no

 >>= right shift and assignment i >>= 1 no

 ||= logical or and assignment i ||=
true no

 &&= logical and and assignment i &&=
true no

Index Accessors

Index accessors are used to query a value by index or key, for example an array
item or map entry. The nilable variant []? is supposed to return nil when the
index is not found, while the non-nilable variant raises in that case.
Implementations in the standard-library usually raise KeyError or IndexError .

Operator Description Example Overloadable

 [] index accessor ary[i] yes

 []? nilable index accessor ary[i]? yes

https://crystal-lang.org/api/latest/KeyError.html
https://crystal-lang.org/api/latest/IndexError.html

Nil

133

Visibility
Methods are public by default: the compiler will always let you invoke them. There
is no public keyword for this reason.

Methods can be marked as private or protected .

Private methods
A private method can only be invoked without a receiver, that is, without
something before the dot. The only exception is self as a receiver:

class Person
 private def say(message)
 puts message
 end

 def say_hello
 say "hello" # OK, no receiver
 self.say "hello" # OK, self is a receiver, but it's allowed.

 other = Person.new "Other"
 other.say "hello" # Error, other is a receiver
 end
end

Note that private methods are visible by subclasses:

class Employee < Person
 def say_bye
 say "bye" # OK
 end
end

Private types
Private types can only be referenced inside the namespace where they are
defined, and never be fully qualified.

class Foo
 private class Bar
 end

 Bar # OK
 Foo::Bar # Error
end

Foo::Bar # Error

 private can be used with class , module , lib , enum , alias and constants:

Nil

134

class Foo
 private ONE = 1

 ONE # => 1
end

Foo::ONE # Error

Protected methods
A protected method can only be invoked on:

1. instances of the same type as the current type
2. instances in the same namespace (class, struct, module, etc.) as the current

type

Example of 1

class Person
 protected def say(message)
 puts message
 end

 def say_hello
 say "hello" # OK, implicit self is a Person
 self.say "hello" # OK, self is a Person

 other = Person.new "Other"
 other.say "hello" # OK, other is a Person
 end
end

class Animal
 def make_a_person_talk
 person = Person.new
 person.say "hello" # Error: person is a Person but current type is an Animal
 end
end

one_more = Person.new "One more"
one_more.say "hello" # Error: one_more is a Person but current type is the Program

Example of 2

module Namespace
 class Foo
 protected def foo
 puts "Hello"
 end
 end

 class Bar
 def bar
 # Works, because Foo and Bar are under Namespace
 Foo.new.foo
 end
 end
end

Namespace::Bar.new.bar

Nil

135

A protected method can only be invoked from the scope of its class or its
descendants. That includes the class scope and bodies of class methods and
instance methods of the same type the protected method is defined on, as well as
all types including or inherinting that type and all types in that namespace.

class Parent
 protected def self.protected_method
 end

 Parent.protected_method # OK

 def instance_method
 Parent.protected_method # OK
 end

 def self.class_method
 Parent.protected_method # OK
 end
end

class Child < Parent
 Parent.protected_method # OK

 def instance_method
 Parent.protected_method # OK
 end

 def self.class_method
 Parent.protected_method # OK
 end
end

class Parent::Sub
 Parent.protected_method # OK

 def instance_method
 Parent.protected_method # OK
 end

 def self.class_method
 Parent.protected_method # OK
 end
end

Private top-level methods
A private top-level method is only visible in the current file.

In file one.cr
private def greet
 puts "Hello"
end

greet # => "Hello"

In file two.cr
require "./one"

greet # undefined local variable or method 'greet'

Nil

136

This allows you to define helper methods in a file that will only be known in that
file.

Private top-level types
A private top-level type is only visible in the current file.

In file one.cr
private class Greeter
 def self.greet
 "Hello"
 end
end

Greeter.greet # => "Hello"

In file two.cr
require "./one"

Greeter.greet # undefined constant 'Greeter'

Nil

137

Inheritance
Every class except Object , the hierarchy root, inherits from another class (its
superclass). If you don't specify one it defaults to Reference for classes and
 Struct for structs.

A class inherits all instance variables and all instance and class methods of a
superclass, including its constructors (new and initialize).

class Person
 def initialize(@name : String)
 end

 def greet
 puts "Hi, I'm #{@name}"
 end
end

class Employee < Person
end

employee = Employee.new "John"
employee.greet # "Hi, I'm John"

If a class defines a new or initialize then its superclass constructors are not
inherited:

You can override methods in a derived class:

class Person
 def initialize(@name : String)
 end
end

class Employee < Person
 def initialize(@name : String, @company_name : String)
 end
end

Employee.new "John", "Acme" # OK
Employee.new "Peter" # Error: wrong number of arguments for 'Employee:Class#new

Nil

138

class Person
 def greet(msg)
 puts "Hi, #{msg}"
 end
end

class Employee < Person
 def greet(msg)
 puts "Hello, #{msg}"
 end
end

p = Person.new
p.greet "everyone" # "Hi, everyone"

e = Employee.new
e.greet "everyone" # "Hello, everyone"

Instead of overriding you can define specialized methods by using type
restrictions:

class Person
 def greet(msg)
 puts "Hi, #{msg}"
 end
end

class Employee < Person
 def greet(msg : Int32)
 puts "Hi, this is a number: #{msg}"
 end
end

e = Employee.new
e.greet "everyone" # "Hi, everyone"

e.greet 1 # "Hi, this is a number: 1"

super
You can invoke a superclass' method using super :

class Person
 def greet(msg)
 puts "Hello, #{msg}"
 end
end

class Employee < Person
 def greet(msg)
 super # Same as: super(msg)
 super("another message")
 end
end

Without arguments or parentheses, super receives the same arguments as the
method's arguments. Otherwise, it receives the arguments you pass to it.

Nil

139

Covariance and Contravariance
One place inheritance can get a little tricky is with arrays. We have to be careful
when declaring an array of objects where inheritance is used. For example,
consider the following

class Foo
end

class Bar < Foo
end

foo_arr = [Bar.new] of Foo # => [#<Bar:0x10215bfe0>] : Array(Foo)
bar_arr = [Bar.new] # => [#<Bar:0x10215bfd0>] : Array(Bar)
bar_arr2 = [Foo.new] of Bar # compiler error

A Foo array can hold both Foo's and Bar's, but an array of Bar can only hold Bar
and its subclasses.

One place this might trip you up is when automatic casting comes into play. For
example, the following won't work:

class Foo
end

class Bar < Foo
end

class Test
 @arr : Array(Foo)

 def initialize
 @arr = [Bar.new]
 end
end

we've declared @arr as type Array(Foo) so we may be tempted to think that we
can start putting Bar s in there. Not quite. In the initialize , the type of the
 [Bar.new] expression is Array(Bar) , period. And Array(Bar) is not assignable to
an Array(Foo) instance var.

What's the right way to do this? Change the expression so that it is of the right
type: Array(Foo) (see example above).

class Foo
end

class Bar < Foo
end

class Test
 @arr : Array(Foo)

 def initialize
 @arr = [Bar.new] of Foo
 end
end

Nil

140

This is just one type (Array) and one operation (assignment), the logic of the
above will be applied differently for other types and assignments, in general
Covariance and Contravariance is not fully supported.

https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29

Nil

141

Virtual and abstract types
When a variable's type combines different types under the same class hierarchy,
its type becomes a virtual type. This applies to every class and struct except for
 Reference , Value , Int and Float . An example:

class Animal
end

class Dog < Animal
 def talk
 "Woof!"
 end
end

class Cat < Animal
 def talk
 "Miau"
 end
end

class Person
 getter pet

 def initialize(@name : String, @pet : Animal)
 end
end

john = Person.new "John", Dog.new
peter = Person.new "Peter", Cat.new

If you compile the above program with the tool hierarchy command you will see
this for Person :

- class Object
 |
 +- class Reference
 |
 +- class Person
 @name : String
 @pet : Animal+

You can see that @pet is Animal+ . The + means it's a virtual type, meaning "any
class that inherits from Animal , including Animal ".

The compiler will always resolve a type union to a virtual type if they are under the
same hierarchy:

if some_condition
 pet = Dog.new
else
 pet = Cat.new
end

pet : Animal+

Nil

142

The compiler will always do this for classes and structs under the same hierarchy:
it will find the first superclass from which all types inherit from (excluding
 Reference , Value , Int and Float). If it can't find one, the type union remains.

The real reason the compiler does this is to be able to compile programs faster by
not creating all kinds of different similar unions, also making the generated code
smaller in size. But, on the other hand, it makes sense: classes under the same
hierarchy should behave in a similar way.

Lets make John's pet talk:

john.pet.talk # Error: undefined method 'talk' for Animal

We get an error because the compiler now treats @pet as an Animal+ , which
includes Animal . And since it can't find a talk method on it, it errors.

What the compiler doesn't know is that for us, Animal will never be instantiated as
it doesn't make sense to instantiate one. We have a way to tell the compiler so by
marking the class as abstract :

abstract class Animal
end

Now the code compiles:

john.pet.talk # => "Woof!"

Marking a class as abstract will also prevent us from creating an instance of it:

Animal.new # Error: can't instantiate abstract class Animal

To make it more explicit that an Animal must define a talk method, we can add
it to Animal as an abstract method:

abstract class Animal
 # Makes this animal talk
 abstract def talk
end

By marking a method as abstract the compiler will check that all subclasses
implement this method, even if a program doesn't use them.

Abstract methods can also be defined in modules, and the compiler will check that
including types implement them.

Nil

143

Class methods
Class methods are methods associated to a class or module instead of a specific
instance.

module CaesarCipher
 def self.encrypt(string : String)
 string.chars.map { |char| ((char.upcase.ord - 52) % 26 + 65).chr }.join
 end
end

CaesarCipher.encrypt("HELLO") # => "URYYB"

Class methods are defined by prefixing the method name with the type name and
a period.

def CaesarCipher.decrypt(string : String)
 encrypt(string)
end

When they're defined inside a class or module scope it is easier to use self
instead of the class name.

Class methods can also be defined by extending a Module .

A class method can be called under the same name as it was defined
(CaesarCipher.decrypt("HELLO")). When called from within the same class or module
scope the receiver can be self or implicit (like encrypt(string)).

Constructors
Constructors are normal class methods which create a new instance of the class.
By default all classes in Crystal have at least one constructor called new , but they
may also define other constructors with different names.

Nil

144

Class variables
Class variables are associated to classes instead of instances. They are prefixed
with two "at" signs (@@). For example:

class Counter
 @@instances = 0

 def initialize
 @@instances += 1
 end

 def self.instances
 @@instances
 end
end

Counter.instances # => 0
Counter.new
Counter.new
Counter.new
Counter.instances # => 3

Class variables can be read and written from class methods or instance methods.

Their type is inferred using the global type inference algorithm.

Class variables are inherited by subclasses with this meaning: their type is the
same, but each class has a different runtime value. For example:

class Parent
 @@numbers = [] of Int32

 def self.numbers
 @@numbers
 end
end

class Child < Parent
end

Parent.numbers # => []
Child.numbers # => []

Parent.numbers << 1
Parent.numbers # => [1]
Child.numbers # => []

Class variables can also be associated to modules and structs. Like above, they
are inherited by including/subclassing types.

Nil

145

finalize
If a class defines a finalize method, when an instance of that class is garbage-
collected that method will be invoked:

class Foo
 def finalize
 # Invoked when Foo is garbage-collected
 # Use to release non-managed resources (ie. C libraries, structs)
 end
end

Use this method to release resources allocated by external libraries that are not
directly managed by Crystal garbage collector.

Examples of this can be found in IO::FileDescriptor#finalize or
 OpenSSL::Digest#finalize .

Notes:

The finalize method will only be invoked once the object has been fully
initialized via the initialize method. If an exception is raised inside the
 initialize method, finalize won't be invoked. If your class defines a
 finalize method, be sure to catch any exceptions that might be raised in the
 initialize methods and free resources.

Allocating any new object instances during garbage-collection might result in
undefined behavior and most likely crashing your program.

https://crystal-lang.org/api/IO/FileDescriptor.html#finalize-instance-method
https://crystal-lang.org/api/OpenSSL/Digest.html#finalize-instance-method

Nil

146

Modules
Modules serve two purposes:

as namespaces for defining other types, methods and constants
as partial types that can be mixed in other types

An example of a module as a namespace:

module Curses
 class Window
 end
end

Curses::Window.new

Library authors are advised to put their definitions inside a module to avoid name
clashes. The standard library usually doesn't have a namespace as its types and
methods are very common, to avoid writing long names.

To use a module as a partial type you use include or extend .

An include makes a type include methods defined in that module as instance
methods:

module ItemsSize
 def size
 items.size
 end
end

class Items
 include ItemsSize

 def items
 [1, 2, 3]
 end
end

items = Items.new
items.size # => 3

In the above example, it is as if we pasted the size method from the module into
the Items class. The way this really works is by making each type have a list of
ancestors, or parents. By default this list starts with the superclass. As modules
are included they are prepended to this list. When a method is not found in a type
it is looked up in this list. When you invoke super , the first type in this ancestors
list is used.

A module can include other modules, so when a method is not found in it it will be
looked up in the included modules.

An extend makes a type include methods defined in that module as class
methods:

Nil

147

module SomeSize
 def size
 3
 end
end

class Items
 extend SomeSize
end

Items.size # => 3

Both include and extend make constants defined in the module available to the
including/extending type.

Both of them can be used at the top level to avoid writing a namespace over and
over (although the chances of name clashes increase):

module SomeModule
 class SomeType
 end

 def some_method
 1
 end
end

include SomeModule

SomeType.new # OK, same as SomeModule::SomeType
some_method # OK, 1

extend self
A common pattern for modules is extend self :

module Base64
 extend self

 def encode64(string)
 # ...
 end

 def decode64(string)
 # ...
 end
end

In this way a module can be used as a namespace:

Base64.encode64 "hello" # => "aGVsbG8="

But also it can be included in the program and its methods can be invoked without
a namespace:

Nil

148

include Base64

encode64 "hello" # => "aGVsbG8="

For this to be useful the method name should have some reference to the
module, otherwise chances of name clashes are high.

A module cannot be instantiated:

module Moo
end

Moo.new # undefined method 'new' for Moo:Module

Module Type Checking
Modules can also be used for type checking.

If we define two modules with names A and B :

module A; end

module B; end

These can be included into classes:

class One
 include A
end

class Two
 include B
end

class Three < Two
 include A
end

We can then type check against instances of these classes with not only their
class, but the included modules as well:

one = One.new
typeof(one) # => One
one.is_a?(A) # => true
one.is_a?(B) # => false

three = Three.new
typeof(three) # => Three
three.is_a?(A) # => true
three.is_a?(B) # => true

This allows you to define arrays and methods based on module type instead of
class:

Nil

149

one = One.new
two = Two.new
three = Three.new

new_array = Array(A).new
new_array << one # Ok, One inherits module A
new_array << three # Ok, Three includes module A

new_array << two # Error, because Two does not inherit module A

Nil

150

Generics
Generics allow you to parameterize a type based on other type. Consider a Box
type:

class MyBox(T)
 def initialize(@value : T)
 end

 def value
 @value
 end
end

int_box = MyBox(Int32).new(1)
int_box.value # => 1 (Int32)

string_box = MyBox(String).new("hello")
string_box.value # => "hello" (String)

another_box = MyBox(String).new(1) # Error, Int32 doesn't match String

Generics are especially useful for implementing collection types. Array , Hash ,
 Set are generic types, as is Pointer .

More than one type argument is allowed:

class MyDictionary(K, V)
end

Any name can be used for type arguments:

class MyDictionary(KeyType, ValueType)
end

Type variables inference
Type restrictions in a generic type's constructor are free variables when type
arguments were not specified, and then are used to infer them. For example:

MyBox.new(1) # : MyBox(Int32)
MyBox.new("hello") # : MyBox(String)

In the above code we didn't have to specify the type arguments of MyBox , the
compiler inferred them following this process:

 MyBox.new(value) delegates to initialize(@value : T)
 T isn't bound to a type yet, so the compiler binds it to the type of the given
argument

In this way generic types are less tedious to work with.

Nil

151

Generic structs and modules
Structs and modules can be generic too. When a module is generic you include it
like this:

module Moo(T)
 def t
 T
 end
end

class Foo(U)
 include Moo(U)

 def initialize(@value : U)
 end
end

foo = Foo.new(1)
foo.t # Int32

Note that in the above example T becomes Int32 because Foo.new(1) makes
 U become Int32 , which in turn makes T become Int32 via the inclusion of
the generic module.

Generic types inheritance
Generic classes and structs can be inherited. When inheriting you can specify an
instance of the generic type, or delegate type variables:

class Parent(T)
end

class Int32Child < Parent(Int32)
end

class GenericChild(T) < Parent(T)
end

Nil

152

Structs
Instead of defining a type with class you can do so with struct :

struct Point
 property x, y

 def initialize(@x : Int32, @y : Int32)
 end
end

Structs inherit from Value so they are allocated on the stack and passed by value:
when passed to methods, returned from methods or assigned to variables, a copy
of the value is actually passed (while classes inherit from Reference, are allocated
on the heap and passed by reference).

Therefore structs are mostly useful for immutable data types and/or stateless
wrappers of other types, usually for performance reasons to avoid lots of small
memory allocations when passing small copies might be more efficient (for more
details, see the performance guide).

Mutable structs are still allowed, but you should be careful when writing code
involving mutability if you want to avoid surprises that are described below.

Passing by value
A struct is always passed by value, even when you return self from the method
of that struct:

struct Counter
 def initialize(@count : Int32)
 end

 def plus
 @count += 1
 self
 end
end

counter = Counter.new(0)
counter.plus.plus # => Counter(@x=2)
puts counter # => Counter(@x=1)

Notice that the chained calls of plus return the expected result, but only the first
call to it modifies the variable counter , as the second call operates on the copy of
the struct passed to it from the first call, and this copy is discarded after the
expression is executed.

You should also be careful when working on mutable types inside of the struct:

https://crystal-lang.org/api/Value.html
https://crystal-lang.org/api/Reference.html
https://crystal-lang.org/docs/guides/performance.html#use-structs-when-possible

Nil

153

class Klass
 property array = ["str"]
end

struct Strukt
 property array = ["str"]
end

def modify(object)
 object.array << "foo"
 object.array = ["new"]
 object.array << "bar"
end

klass = Klass.new
puts modify(klass) # => ["new", "bar"]
puts klass.array # => ["new", "bar"]

strukt = Strukt.new
puts modify(strukt) # => ["new", "bar"]
puts strukt.array # => ["str", "foo"]

What happens with the strukt here:

 Array is passed by reference, so the reference to ["str"] is stored in the
property of strukt
when strukt is passed to modify , a copy of the strukt is passed with the
reference to array inside it
the array referenced by array is modified (element inside it is added) by
 object.array << "foo"

this is also reflected in the original strukt as it holds reference to the same
array
 object.array = ["new"] replaces the reference in the copy of strukt with the
reference to the new array
 object.array << "bar" appends to this newly created array
 modify returns the reference to this new array and its content is printed
the reference to this new array was held only in the copy of strukt , but not
in the original, so that's why the original strukt only retained the result of the
first statement, but not of the other two statements

 Klass is a class, so it is passed by reference to modify , and object.array =
["new"] saves the reference to the newly created array in the original klass
object, not in the copy as it was with the strukt .

Inheritance
A struct implicitly inherits from Struct, which inherits from Value. A class
implicitly inherits from Reference.
A struct cannot inherit from a non-abstract struct.

The second point has a reason to it: a struct has a very well defined memory
layout. For example, the above Point struct occupies 8 bytes. If you have an
array of points the points are embedded inside the array's buffer:

http://crystal-lang.org/api/Struct.html
http://crystal-lang.org/api/Value.html
http://crystal-lang.org/api/Reference.html

Nil

154

The array's buffer will have 8 bytes dedicated to each Point
ary = [] of Point

If Point is inherited, an array of such type should also account for the fact that
other types can be inside it, so the size of each element should grow to
accommodate that. That is certainly unexpected. So, non-abstract structs can't be
inherited from. Abstract structs, on the other hand, will have descendants, so it is
expected that an array of them will account for the possibility of having multiple
types inside it.

A struct can also include modules and can be generic, just like a class.

Nil

155

Constants
Constants can be declared at the top level or inside other types. They must start
with a capital letter:

PI = 3.14

module Earth
 RADIUS = 6_371_000
end

PI # => 3.14
Earth::RADIUS # => 6_371_000

Although not enforced by the compiler, constants are usually named with all
capital letters and underscores to separate words.

A constant definition can invoke methods and have complex logic:

TEN = begin
 a = 0
 while a < 10
 a += 1
 end
 a
end

TEN # => 10

Pseudo Constants
Crystal provides a few pseudo-constants which provide reflective data about the
source code being executed.

 __LINE__ is the current line number in the currently executing crystal file. When
 __LINE__ is declared as the default value to a method parameter, it represents the
line number at the location of the method call.

 __END_LINE__ is the line number of the end of the calling block. Can only be used
as a default value to a method parameter.

 __FILE__ references the full path to the currently executing crystal file.

 __DIR__ references the full path to the directory where the currently executing
crystal file is located.

Nil

156

Assuming this example code is saved at: /crystal_code/pseudo_constants.cr
#
def pseudo_constants(caller_line = __LINE__, end_of_caller = __END_LINE__)
 puts "Called from line number: #{caller_line}"
 puts "Currently at line number: #{__LINE__}"
 puts "End of caller block is at: #{end_of_caller}"
 puts "File path is: #{__FILE__}"
 puts "Directory file is in: #{__DIR__}"
end

begin
 pseudo_constants
end

Program prints:
Called from line number: 13
Currently at line number: 5
End of caller block is at: 14
File path is: /crystal_code/pseudo_constants.cr
Directory file is in: /crystal_code

Dynamic assignment
Dynamically assigning values to constants using the chained assignment or the
multiple assignment is not supported and results in a syntax error.

ONE, TWO, THREE = 1, 2, 3 # Syntax error: Multiple assignment is not allowed for const

Nil

157

Enums
An enum is a set of integer values, where each value has an associated name.
For example:

enum Color
 Red
 Green
 Blue
end

An enum is defined with the enum keyword, followed by its name. The enum's
body contains the values. Values start with the value 0 and are incremented by
one. The default value can be overwritten:

enum Color
 Red # 0
 Green # 1
 Blue = 5 # overwritten to 5
 Yellow # 6 (5 + 1)
end

Each constant in the enum has the type of the enum:

Color::Red # :: Color

To get the underlying value you invoke value on it:

Color::Green.value # => 1

The type of the value is Int32 by default but can be changed:

enum Color : UInt8
 Red
 Green
 Blue
end

Color::Red.value # :: UInt8

Only integer types are allowed as the underlying type.

All enums inherit from Enum.

Flags enums
An enum can be marked with the @[Flags] attribute. This changes the default
values:

http://crystal-lang.org/api/Enum.html

Nil

158

@[Flags]
enum IOMode
 Read # 1
 Write # 2
 Async # 4
end

The @[Flags] attribute makes the first constant's value be 1 , and successive
constants are multiplied by 2 .

Implicit constants, None and All , are automatically added to these enums,
where None has the value 0 and All has the "or"ed value of all constants.

IOMode::None.value # => 0
IOMode::All.value # => 7

Additionally, some Enum methods check the @[Flags] attribute. For example:

puts(Color::Red) # prints "Red"
puts(IOMode::Write | IOMode::Async) # prints "Write, Async"

Enums from integers
An enum can be created from an integer:

puts Color.new(1) # => prints "Green"

Values that don't correspond to an enum's constants are allowed: the value will
still be of type Color , but when printed you will get the underlying value:

puts Color.new(10) # => prints "10"

This method is mainly intended to convert integers from C to enums in Crystal.

Methods
Just like a class or a struct, you can define methods for enums:

enum Color
 Red
 Green
 Blue

 def red?
 self == Color::Red
 end
end

Color::Red.red? # => true
Color::Blue.red? # => false

Nil

159

Class variables are allowed, but instance variables are not.

Usage
Enums are a type-safe alternative to Symbol. For example, an API's method can
specify a type restriction using an enum type:

def paint(color : Color)
 case color
 when Color::Red
 # ...
 else
 # Unusual, but still can happen
 raise "unknown color: #{color}"
 end
end

paint Color::Red

The above could also be implemented with a Symbol:

def paint(color : Symbol)
 case color
 when :red
 # ...
 else
 raise "unknown color: #{color}"
 end
end

paint :red

However, if the programmer makes a typo, say :reed , the error will only be
caught at runtime, while attempting to use Color::Reed will result in a compile-
time error.

The recommended thing to do is to use enums whenever possible, only use
symbols for the internal implementation of an API, and avoid symbols for public
APIs. But you are free to do what you want.

http://crystal-lang.org/api/Symbol.html

Nil

160

Blocks and Procs
Methods can accept a block of code that is executed with the yield keyword. For
example:

def twice
 yield
 yield
end

twice do
 puts "Hello!"
end

The above program prints "Hello!" twice, once for each yield .

To define a method that receives a block, simply use yield inside it and the
compiler will know. You can make this more evident by declaring a dummy block
argument, indicated as a last argument prefixed with ampersand (&):

def twice(&block)
 yield
 yield
end

To invoke a method and pass a block, you use do ... end or { ... } . All of
these are equivalent:

twice() do
 puts "Hello!"
end

twice do
 puts "Hello!"
end

twice { puts "Hello!" }

The difference between using do ... end and { ... } is that do ... end binds to
the left-most call, while { ... } binds to the right-most call:

foo bar do
 something
end

The above is the same as
foo(bar) do
 something
end

foo bar { something }

The above is the same as

foo(bar { something })

Nil

161

The reason for this is to allow creating Domain Specific Languages (DSLs) using
 do ... end to have them be read as plain English:

open file "foo.cr" do
 something
end

Same as:
open(file("foo.cr")) do
end

You wouldn't want the above to be:

open(file("foo.cr") do
end)

Overloads
Two methods, one that yields and another that doesn't, are considered different
overloads, as explained in the overloading section.

Yield arguments
The yield expression is similar to a call and can receive arguments. For
example:

def twice
 yield 1
 yield 2
end

twice do |i|
 puts "Got #{i}"
end

The above prints "Got 1" and "Got 2".

A curly braces notation is also available:

twice { |i| puts "Got #{i}" }

You can yield many values:

def many
 yield 1, 2, 3
end

many do |x, y, z|
 puts x + y + z
end

Output: 6

Nil

162

A block can specify less than the arguments yielded:

def many
 yield 1, 2, 3
end

many do |x, y|
 puts x + y
end

Output: 3

It's an error specifying more block arguments than those yielded:

def twice
 yield
 yield
end

twice do |i| # Error: too many block arguments
end

Each block variable has the type of every yield expression in that position. For
example:

def some
 yield 1, 'a'
 yield true, "hello"
 yield 2, nil
end

some do |first, second|
 # first is Int32 | Bool
 # second is Char | String | Nil
end

The block variable second also includes the Nil type because the last yield
expression didn't include a second argument.

Short one-argument syntax
If a block has a single argument and invokes a method on it, the block can be
replaced with the short syntax argument.

This:

method do |argument|
 argument.some_method
end

and

method { |argument| argument.some_method }

Nil

163

can both be written as:

method &.some_method

Or like:

method(&.some_method)

In either case, &.some_method is an argument passed to method . This argument is
syntactically equivalent to the block variants. It is only syntactic sugar and does
not have any performance penalty.

If the method has other required parameters, the short syntax argument should
also be supplied in the method's argument list.

["a", "b"].join(",", &.upcase)

Is equivalent to:

["a", "b"].join(",") { |s| s.upcase }

Arguments can be used with the short syntax argument as well:

["i", "o"].join(",", &.upcase(Unicode::CaseOptions::Turkic))

Operators can be invoked too:

method &.+(2)
method(&.[index])

yield value
The yield expression itself has a value: the last expression of the block. For
example:

def twice
 v1 = yield 1
 puts v1

 v2 = yield 2
 puts v2
end

twice do |i|
 i + 1
end

The above prints "2" and "3".

A yield expression's value is mostly useful for transforming and filtering values.
The best examples of this are Enumerable#map and Enumerable#select:

https://crystal-lang.org/api/Enumerable.html#map%28%26block%3AT-%3EU%29forallU-instance-method
https://crystal-lang.org/api/Enumerable.html#select%28%26block%3AT-%3E%29-instance-method

Nil

164

ary = [1, 2, 3]
ary.map { |x| x + 1 } # => [2, 3, 4]
ary.select { |x| x % 2 == 1 } # => [1, 3]

A dummy transformation method:

def transform(value)
 yield value
end

transform(1) { |x| x + 1 } # => 2

The result of the last expression is 2 because the last expression of the
 transform method is yield , whose value is the last expression of the block.

Type restrictions
The type of the block in a method that uses yield can be restricted using the
 &block syntax. For example:

def transform_int(start : Int32, &block : Int32 -> Int32)
 result = yield start
 result * 2
end

transform_int(3) { |x| x + 2 } # => 10
transform_int(3) { |x| "foo" } # Error: expected block to return Int32, not String

break
A break expression inside a block exits early from the method:

def thrice
 puts "Before 1"
 yield 1
 puts "Before 2"
 yield 2
 puts "Before 3"
 yield 3
 puts "After 3"
end

thrice do |i|
 if i == 2
 break
 end
end

The above prints "Before 1" and "Before 2". The thrice method didn't execute
the puts "Before 3" expression because of the break .

 break can also accept arguments: these become the method's return value. For
example:

Nil

165

def twice
 yield 1
 yield 2
end

twice { |i| i + 1 } # => 3
twice { |i| break "hello" } # => "hello"

The first call's value is 3 because the last expression of the twice method is
 yield , which gets the value of the block. The second call's value is "hello"
because a break was performed.

If there are conditional breaks, the call's return value type will be a union of the
type of the block's value and the type of the many break s:

value = twice do |i|
 if i == 1
 break "hello"
 end
 i + 1
end
value # :: Int32 | String

If a break receives many arguments, they are automatically transformed to a
Tuple:

values = twice { break 1, 2 }
values # => {1, 2}

If a break receives no arguments, it's the same as receiving a single nil
argument:

value = twice { break }
value # => nil

next
The next expression inside a block exits early from the block (not the method).
For example:

http://crystal-lang.org/api/Tuple.html

Nil

166

def twice
 yield 1
 yield 2
end

twice do |i|
 if i == 1
 puts "Skipping 1"
 next
 end

 puts "Got #{i}"
end

Output:
Skipping 1
Got 2

The next expression accepts arguments, and these give the value of the yield
expression that invoked the block:

def twice
 v1 = yield 1
 puts v1

 v2 = yield 2
 puts v2
end

twice do |i|
 if i == 1
 next 10
 end

 i + 1
end

Output
10
3

If a next receives many arguments, they are automatically transformed to a
Tuple. If it receives no arguments it's the same as receiving a single nil
argument.

with ... yield
A yield expression can be modified, using the with keyword, to specify an
object to use as the default receiver of method calls within the block:

http://crystal-lang.org/api/Tuple.html

Nil

167

class Foo
 def one
 1
 end

 def yield_with_self
 with self yield
 end

 def yield_normally
 yield
 end
end

def one
 "one"
end

Foo.new.yield_with_self { one } # => 1
Foo.new.yield_normally { one } # => "one"

Unpacking block arguments
A block argument can specify sub-arguments enclosed in parentheses:

array = [{1, "one"}, {2, "two"}]
array.each do |(number, word)|
 puts "#{number}: #{word}"
end

The above is simply syntax sugar of this:

array = [{1, "one"}, {2, "two"}]
array.each do |arg|
 number = arg[0]
 word = arg[1]
 puts "#{number}: #{word}"
end

That means that any type that responds to [] with integers can be unpacked in
a block argument.

For Tuple arguments you can take advantage of auto-splatting and do not need
parentheses:

array = [{1, "one", true}, {2, "two", false}]
array.each do |number, word, bool|
 puts "#{number}: #{word} #{bool}"
end

Hash(K, V)#each:Nil-instance-method) passes Tuple(K, V) to the block so
iterating key-value pairs works with auto-splatting:

http://crystal-lang.org/api/Tuple.html
http://crystal-lang.org/api/Hash.html#each(&

Nil

168

h = {"foo" => "bar"}
h.each do |key, value|
 key # => "foo"
 value # => "bar"
end

Performance
When using blocks with yield , the blocks are always inlined: no closures, calls
or function pointers are involved. This means that this:

def twice
 yield 1
 yield 2
end

twice do |i|
 puts "Got: #{i}"
end

is exactly the same as writing this:

i = 1
puts "Got: #{i}"
i = 2
puts "Got: #{i}"

For example, the standard library includes a times method on integers, allowing
you to write:

3.times do |i|
 puts i
end

This looks very fancy, but is it as fast as a C for loop? The answer is: yes!

This is Int#times definition:

struct Int
 def times
 i = 0
 while i < self
 yield i
 i += 1
 end
 end
end

Because a non-captured block is always inlined, the above method invocation is
exactly the same as writing this:

Nil

169

i = 0
while i < 3
 puts i
 i += 1
end

Have no fear using blocks for readability or code reuse, it won't affect the resulting
executable performance.

Nil

170

Capturing blocks
A block can be captured and turned into a Proc , which represents a block of
code with an associated context: the closured data.

To capture a block you must specify it as a method's block argument, give it a
name and specify the input and output types. For example:

def int_to_int(&block : Int32 -> Int32)
 block
end

proc = int_to_int { |x| x + 1 }
proc.call(1) # => 2

The above code captures the block of code passed to int_to_int in the block
variable, and returns it from the method. The type of proc is Proc(Int32, Int32), a
function that accepts a single Int32 argument and returns an Int32 .

In this way a block can be saved as a callback:

class Model
 def on_save(&block)
 @on_save_callback = block
 end

 def save
 if callback = @on_save_callback
 callback.call
 end
 end
end

model = Model.new
model.on_save { puts "Saved!" }
model.save # prints "Saved!"

In the above example the type of &block wasn't specified: this just means that the
captured block doesn't have arguments and doesn't return anything.

Note that if the return type is not specified, nothing gets returned from the proc
call:

def some_proc(&block : Int32 ->)
 block
end

proc = some_proc { |x| x + 1 }
proc.call(1) # void

To have something returned, either specify the return type or use an underscore
to allow any return type:

http://crystal-lang.org/api/Proc.html

Nil

171

def some_proc(&block : Int32 -> _)
 block
end

proc = some_proc { |x| x + 1 }
proc.call(1) # 2

proc = some_proc { |x| x.to_s }
proc.call(1) # "1"

break and next
 return and break can't be used inside a captured block. next can be used and
will exit and give the value of the captured block.

with ... yield
The default receiver within a captured block can't be changed by using with ...
yield .

Nil

172

Proc literal
A captured block is the same as declaring a Proc literal and passing it to the
method.

def some_proc(&block : Int32 -> Int32)
 block
end

x = 0
proc = ->(i : Int32) { x += i }
proc = some_proc(&proc)
proc.call(1) # => 1
proc.call(10) # => 11
x # => 11

As explained in the proc literals section, a Proc can also be created from existing
methods:

def add(x, y)
 x + y
end

adder = ->add(Int32, Int32)
adder.call(1, 2) # => 3

Nil

173

Block forwarding
To forward captured blocks, you use a block argument, prefixing an expression
with & :

def capture(&block)
 block
end

def invoke(&block)
 block.call
end

proc = capture { puts "Hello" }
invoke(&proc) # prints "Hello"

In the above example, invoke receives a block. We can't pass proc directly to it
because invoke doesn't receive regular arguments, just a block argument. We
use & to specify that we really want to pass proc as the block argument.
Otherwise:

invoke(proc) # Error: wrong number of arguments for 'invoke' (1 for 0)

You can actually pass a proc to a method that yields:

def capture(&block)
 block
end

def twice
 yield
 yield
end

proc = capture { puts "Hello" }
twice &proc

The above is simply rewritten to:

proc = capture { puts "Hello" }
twice do
 proc.call
end

Or, combining the & and -> syntaxes:

twice &->{ puts "Hello" }

Or:

Nil

174

def say_hello
 puts "Hello"
end

twice &->say_hello

Forwarding non-captured blocks
To forward non-captured blocks, you must use yield :

def foo
 yield 1
end

def wrap_foo
 puts "Before foo"
 foo do |x|
 yield x
 end
 puts "After foo"
end

wrap_foo do |i|
 puts i
end

Output:
Before foo
1
After foo

You can also use the &block syntax to forward blocks, but then you have to at
least specify the input types, and the generated code will involve closures and will
be slower:

def foo
 yield 1
end

def wrap_foo(&block : Int32 -> _)
 puts "Before foo"
 foo(&block)
 puts "After foo"
end

wrap_foo do |i|
 puts i
end

Output:
Before foo
1
After foo

Try to avoid forwarding blocks like this if doing yield is enough. There's also the
issue that break and next are not allowed inside captured blocks, so the
following won't work when using &block forwarding:

Nil

175

foo_forward do |i|
 break # error
end

In short, avoid &block forwarding when yield is involved.

Nil

176

Closures
Captured blocks and proc literals closure local variables and self . This is better
understood with an example:

x = 0
proc = ->{ x += 1; x }
proc.call # => 1
proc.call # => 2
x # => 2

Or with a proc returned from a method:

def counter
 x = 0
 ->{ x += 1; x }
end

proc = counter
proc.call # => 1
proc.call # => 2

In the above example, even though x is a local variable, it was captured by the
proc literal. In this case the compiler allocates x on the heap and uses it as the
context data of the proc to make it work, because normally local variables live in
the stack and are gone after a method returns.

Type of closured variables
The compiler is usually moderately smart about the type of local variables. For
example:

def foo
 yield
end

x = 1
foo do
 x = "hello"
end
x # : Int32 | String

The compiler knows that after the block, x can be Int32 or String (it could know
that it will always be String because the method always yields; this may improve
in the future).

If x is assigned something else after the block, the compiler knows the type
changed:

Nil

177

x = 1
foo do
 x = "hello"
end
x # : Int32 | String

x = 'a'
x # : Char

However, if x is closured by a proc, the type is always the mixed type of all
assignments to it:

def capture(&block)
 block
end

x = 1
capture { x = "hello" }

x = 'a'
x # : Int32 | String | Char

This is because the captured block could have been potentially stored in a class
or instance variable and invoked in a separate thread in between the instructions.
The compiler doesn't do an exhaustive analysis of this: it just assumes that if a
variable is captured by a proc, the time of that proc invocation is unknown.

This also happens with regular proc literals, even if it's evident that the proc
wasn't invoked or stored:

def capture(&block)
 block
end

x = 1
->{ x = "hello" }

x = 'a'
x # : Int32 | String | Char

Nil

178

alias
With alias you can give a type a different name:

alias PInt32 = Pointer(Int32)

ptr = PInt32.malloc(1) # : Pointer(Int32)

Every time you use an alias the compiler replaces it with the type it refers to.

Aliases are useful to avoid writing long type names, but also to be able to talk
about recursive types:

alias RecArray = Array(Int32) | Array(RecArray)

ary = [] of RecArray
ary.push [1, 2, 3]
ary.push ary
ary # => [[1, 2, 3], [...]]

A real-world example of a recursive type is json:

module Json
 alias Type = Nil |
 Bool |
 Int64 |
 Float64 |
 String |
 Array(Type) |
 Hash(String, Type)
end

Nil

179

Exception handling
Crystal's way to do error handling is by raising and rescuing exceptions.

Raising exception
You raise exceptions by invoking a top-level raise method. Unlike other
keywords, raise is a regular method with two overloads: one accepting a String
and another accepting an Exception instance:

raise "OH NO!"
raise Exception.new("Some error")

The String version just creates a new Exception instance with that message.

Only Exception instances or subclasses can be raised.

Defining custom exceptions
To define a custom exception type, just subclass from Exception:

class MyException < Exception
end

class MyOtherException < Exception
end

You can, as always, define a constructor for your exception or just use the default
one.

Rescuing exceptions
To rescue any exception use a begin ... rescue ... end expression:

begin
 raise "OH NO!"
rescue
 puts "Rescued!"
end

Output: Rescued!

To access the rescued exception you can specify a variable in the rescue clause:

https://crystal-lang.org/api/toplevel.html#raise%28exception%3AException%29%3ANoReturn-class-method
https://crystal-lang.org/api/toplevel.html#raise%28message%3AString%29%3ANoReturn-class-method
http://crystal-lang.org/api/Exception.html
http://crystal-lang.org/api/Exception.html

Nil

180

begin
 raise "OH NO!"
rescue ex
 puts ex.message
end

Output: OH NO!

To rescue just one type of exception (or any of its subclasses):

begin
 raise MyException.new("OH NO!")
rescue MyException
 puts "Rescued MyException"
end

Output: Rescued MyException

And to access it, use a syntax similar to type restrictions:

begin
 raise MyException.new("OH NO!")
rescue ex : MyException
 puts "Rescued MyException: #{ex.message}"
end

Output: Rescued MyException: OH NO!

Multiple rescue clauses can be specified:

begin
 # ...
rescue ex1 : MyException
 # only MyException...
rescue ex2 : MyOtherException
 # only MyOtherException...
rescue
 # any other kind of exception
end

You can also rescue multiple exception types at once by specifying a union type:

begin
 # ...
rescue ex : MyException | MyOtherException
 # only MyException or MyOtherException
rescue
 # any other kind of exception
end

else
An else clause is executed only if no exceptions were rescued:

Nil

181

begin
 something_dangerous
rescue
 # execute this if an exception is raised
else
 # execute this if an exception isn't raised
end

An else clause can only be specified if at least one rescue clause is specified.

ensure
An ensure clause is executed at the end of a begin ... end or begin ... rescue
... end expression regardless of whether an exception was raised or not:

begin
 something_dangerous
ensure
 puts "Cleanup..."
end

Will print "Cleanup..." after invoking something_dangerous,
regardless of whether it raised or not

Or:

begin
 something_dangerous
rescue
 # ...
else
 # ...
ensure
 # this will always be executed
end

 ensure clauses are usually used for clean up, freeing resources, etc.

Short syntax form
Exception handling has a short syntax form: assume a method or block definition
is an implicit begin ... end expression, then specify rescue , else , and ensure
clauses:

Nil

182

def some_method
 something_dangerous
rescue
 # execute if an exception is raised
end

The above is the same as:
def some_method
 begin
 something_dangerous
 rescue
 # execute if an exception is raised
 end
end

With ensure :

def some_method
 something_dangerous
ensure
 # always execute this
end

The above is the same as:
def some_method
 begin
 something_dangerous
 ensure
 # always execute this
 end
end

Similarly, the shorthand also works with blocks:
(1..10).each do |n|
 # potentially dangerous operation

rescue
 # ..
else
 # ..
ensure
 # ..
end

Type inference
Variables declared inside the begin part of an exception handler also get the
 Nil type when considered inside a rescue or ensure body. For example:

begin
 a = something_dangerous_that_returns_Int32
ensure
 puts a + 1 # error, undefined method '+' for Nil
end

The above happens even if something_dangerous_that_returns_Int32 never raises, or
if a was assigned a value and then a method that potentially raises is executed:

Nil

183

begin
 a = 1
 something_dangerous
ensure
 puts a + 1 # error, undefined method '+' for Nil
end

Although it is obvious that a will always be assigned a value, the compiler will
still think a might never had a chance to be initialized. Even though this logic
might improve in the future, right now it forces you to keep your exception
handlers to their necessary minimum, making the code's intention more clear:

Clearer than the above: `a` doesn't need
to be in the exception handling code.
a = 1
begin
 something_dangerous
ensure
 puts a + 1 # works
end

Alternative ways to do error handling
Although exceptions are available as one of the mechanisms for handling errors,
they are not your only choice. Raising an exception involves allocating memory,
and executing an exception handler is generally slow.

The standard library usually provides a couple of methods to accomplish
something: one raises, one returns nil . For example:

array = [1, 2, 3]
array[4] # raises because of IndexError
array[4]? # returns nil because of index out of bounds

The usual convention is to provide an alternative "question" method to signal that
this variant of the method returns nil instead of raising. This lets the user
choose whether she wants to deal with exceptions or with nil . Note, however,
that this is not available for every method out there, as exceptions are still the
preferred way because they don't pollute the code with error handling logic.

Nil

184

Type grammar
When:

specifying type restrictions
specifying type arguments
declaring variables
declaring aliases
declaring typedefs
the argument of an is_a? pseudo-call
the argument of an as expression
the argument of a sizeof expression
the argument of an instance_sizeof expression
a method's return type

a convenient syntax is provided for some common types. These are especially
useful when writing C bindings, but can be used in any of the above locations.

Paths and generics
Regular types and generics can be used:

Int32
My::Nested::Type
Array(String)

Union

alias Int32OrString = Int32 | String

The pipe (|) in types creates a union type. Int32 | String is read "Int32 or
String". In regular code, Int32 | String means invoking the method | on Int32
with String as an argument.

Nilable

alias Int32OrNil = Int32?

is the same as:

alias Int32OrNil = Int32 | ::Nil

In regular code, Int32? is an Int32 | ::Nil union type itself.

Nil

185

Pointer

alias Int32Ptr = Int32*

is the same as:

alias Int32Ptr = Pointer(Int32)

In regular code, Int32* means invoking the * method on Int32 .

StaticArray

alias Int32_8 = Int32[8]

is the same as:

alias Int32_8 = StaticArray(Int32, 8)

In regular code, Int32[8] means invoking the [] method on Int32 with 8 as
an argument.

Tuple

alias Int32StringTuple = {Int32, String}

is the same as:

alias Int32StringTuple = Tuple(Int32, String)

In regular code, {Int32, String} is a tuple instance containing Int32 and String
as its elements. This is different than the above tuple type.

NamedTuple

alias Int32StringNamedTuple = {x: Int32, y: String}

is the same as:

alias Int32StringNamedTuple = NamedTuple(x: Int32, y: String)

In regular code, {x: Int32, y: String} is a named tuple instance containing
 Int32 and String for x and y . This is different than the above named tuple
type.

Nil

186

Proc

alias Int32ToString = Int32 -> String

is the same as:

alias Int32ToString = Proc(Int32, String)

To specify a Proc without arguments:

alias ProcThatReturnsInt32 = -> Int32

To specify multiple arguments:

alias Int32AndCharToString = Int32, Char -> String

For nested procs (and any type, in general), you can use parentheses:

alias ComplexProc = (Int32 -> Int32) -> String

In regular code Int32 -> String is a syntax error.

self
 self can be used in the type grammar to denote a self type. Refer to the type
restrictions section.

class
 class is used to refer to a class type, instead of an instance type.

For example:

def foo(x : Int32)
 "instance"
end

def foo(x : Int32.class)
 "class"
end

foo 1 # "instance"
foo Int32 # "class"

 class is also useful for creating arrays and collections of class type:

Nil

187

class Parent
end

class Child1 < Parent
end

class Child2 < Parent
end

ary = [] of Parent.class
ary << Child1
ary << Child2

Underscore
An underscore is allowed in type restrictions. It matches anything:

Same as not specifying a restriction, not very useful
def foo(x : _)
end

A bit more useful: any two arguments Proc that returns an Int32:
def foo(x : _, _ -> Int32)
end

typeof
 typeof is allowed in the type grammar. It returns a union type of the type of the
passed expressions:

typeof(1 + 2) # => Int32
typeof(1, "a") # => (Int32 | String)

Nil

188

Type reflection
Crystal provides basic methods to do type reflection, casting and introspection.

Nil

189

is_a?
The pseudo-method is_a? determines whether an expression's runtime type
inherits or includes another type. For example:

a = 1
a.is_a?(Int32) # => true
a.is_a?(String) # => false
a.is_a?(Number) # => true
a.is_a?(Int32 | String) # => true

It is a pseudo-method because the compiler knows about it and it can affect type
information, as explained in if var.is_a?(...). Also, it accepts a type that must be
known at compile-time as its argument.

Nil

190

nil?
The pseudo-method nil? determines whether an expression's runtime type is
 Nil . For example:

a = 1
a.nil? # => false

b = nil
b.nil? # => true

It is a pseudo-method because the compiler knows about it and it can affect type
information, as explained in if var.nil?(...).

It has the same effect as writing is_a?(Nil) but it's shorter and easier to read and
write.

Nil

191

responds_to?
The pseudo-method responds_to? determines whether a type has a method with
the given name. For example:

a = 1
a.responds_to?(:abs) # => true
a.responds_to?(:size) # => false

It is a pseudo-method because it only accepts a symbol literal as its argument,
and is also treated specially by the compiler, as explained in if var.responds_to?
(...).

Nil

192

as
The as pseudo-method restricts the types of an expression. For example:

if some_condition
 a = 1
else
 a = "hello"
end

a : Int32 | String

In the above code, a is a union of Int32 | String . If for some reason we are
sure a is an Int32 after the if , we can force the compiler to treat it like one:

a_as_int = a.as(Int32)
a_as_int.abs # works, compiler knows that a_as_int is Int32

The as pseudo-method performs a runtime check: if a wasn't an Int32 , an
exception is raised.

The argument to the expression is a type.

If it is impossible for a type to be restricted by another type, a compile-time error is
issued:

1.as(String) # Compile-time error

Note: you can't use as to convert a type to an unrelated type: as is not like a
 cast in other languages. Methods on integers, floats and chars are provided for
these conversions. Alternatively, use pointer casts as explained below.

Converting between pointer types
The as pseudo-method also allows to cast between pointer types:

ptr = Pointer(Int32).malloc(1)
ptr.as(Int8*) # :: Pointer(Int8)

In this case, no runtime checks are done: pointers are unsafe and this type of
casting is usually only needed in C bindings and low-level code.

Converting between pointer types and
other types
Conversion between pointer types and Reference types is also possible:

Nil

193

array = [1, 2, 3]

object_id returns the address of an object in memory,
so we create a pointer with that address
ptr = Pointer(Void).new(array.object_id)

Now we cast that pointer to the same type, and
we should get the same value
array2 = ptr.as(Array(Int32))
array2.same?(array) # => true

No runtime checks are performed in these cases because, again, pointers are
involved. The need for this cast is even more rare than the previous one, but
allows to implement some core types (like String) in Crystal itself, and it also
allows passing a Reference type to C functions by casting it to a void pointer.

Usage for casting to a bigger type
The as pseudo-method can be used to cast an expression to a "bigger" type. For
example:

a = 1
b = a.as(Int32 | Float64)
b # :: Int32 | Float64

The above might not seem to be useful, but it is when, for example, mapping an
array of elements:

ary = [1, 2, 3]

We want to create an array 1, 2, 3 of Int32 | Float64
ary2 = ary.map { |x| x.as(Int32 | Float64) }

ary2 # :: Array(Int32 | Float64)
ary2 << 1.5 # OK

The Array#map method uses the block's type as the generic type for the Array.
Without the as pseudo-method, the inferred type would have been Int32 and
we wouldn't have been able to add a Float64 into it.

Usage for when the compiler can't infer
the type of a block
Sometimes the compiler can't infer the type of a block. This can happen in
recursive calls that depend on each other. In those cases you can use as to let it
know the type:

some_call { |v| v.method.as(ExpectedType) }

Nil

194

as?
The as? pseudo-method is similar to as , except that it returns nil instead of
raising an exception when the type doesn't match. It also can't be used to cast
between pointer types and other types.

Example:

value = rand < 0.5 ? -3 : nil
result = value.as?(Int32) || 10

value.as?(Int32).try &.abs

Nil

195

typeof
The typeof expression returns the type of an expression:

a = 1
b = typeof(a) # => Int32

It accepts multiple arguments, and the result is the union of the expression types:

typeof(1, "a", 'a') # => (Int32 | String | Char)

It is often used in generic code, to make use of the compiler's type inference
capabilities:

hash = {} of Int32 => String
another_hash = typeof(hash).new # :: Hash(Int32, String)

Since typeof doesn't actually evaluate the expression, it can be used on
methods at compile time, such as in this example, which recursively forms a union
type out of nested type parameters:

class Array
 def self.elem_type(typ)
 if typ.is_a?(Array)
 elem_type(typ.first)
 else
 typ
 end
 end
end

nest = [1, ["b", [:c, ['d']]]]
flat = Array(typeof(Array.elem_type(nest))).new
typeof(nest) # => Array(Int32 | Array(String | Array(Symbol | Array(Char))))
typeof(flat) # => Array(String | Int32 | Symbol | Char)

This expression is also available in the type grammar.

Nil

196

Macros
Macros are methods that receive AST nodes at compile-time and produce code
that is pasted into a program. For example:

macro define_method(name, content)
 def {{name}}
 {{content}}
 end
end

This generates:
#
def foo
1
end
define_method foo, 1

foo # => 1

A macro's definition body looks like regular Crystal code with extra syntax to
manipulate the AST nodes. The generated code must be valid Crystal code,
meaning that you can't for example generate a def without a matching end , or a
single when expression of a case , since both of them are not complete valid
expressions. Refer to Pitfalls for more information.

Scope
Macros declared at the top-level are visible anywhere. If a top-level macro is
marked as private it is only accessible in that file.

They can also be defined in classes and modules, and are visible in those
scopes. Macros are also looked-up in the ancestors chain (superclasses and
included modules).

For example, a block which is given an object to use as the default receiver by
being invoked with with ... yield can access macros defined within that object's
ancestors chain:

class Foo
 macro emphasize(value)
 "***#{ {{value}} }***"
 end

 def yield_with_self
 with self yield
 end
end

Foo.new.yield_with_self { emphasize(10) } # => "***10***"

Macros defined in classes and modules can be invoked from outside of them too:

Nil

197

class Foo
 macro emphasize(value)
 "***#{ {{value}} }***"
 end
end

Foo.emphasize(10) # => "***10***"

Interpolation
You use {{...}} to paste, or interpolate, an AST node, as in the above example.

Note that the node is pasted as-is. If in the previous example we pass a symbol,
the generated code becomes invalid:

This generates:
#
def :foo
1
end
define_method :foo, 1

Note that :foo was the result of the interpolation, because that's what was
passed to the macro. You can use the method ASTNode#id in these cases, where
you just need an identifier.

Macro calls
You can invoke a fixed subset of methods on AST nodes at compile-time. These
methods are documented in a fictitious Crystal::Macros module.

For example, invoking ASTNode#id in the above example solves the problem:

macro define_method(name, content)
 def {{name.id}}
 {{content}}
 end
end

This correctly generates:
#
def foo
1
end
define_method :foo, 1

Modules and classes
Modules, classes and structs can also be generated:

https://crystal-lang.org/api/Crystal/Macros/ASTNode.html#id%3AMacroId-instance-method
http://crystal-lang.org/api/Crystal/Macros.html
https://crystal-lang.org/api/Crystal/Macros/ASTNode.html#id%3AMacroId-instance-method

Nil

198

macro define_class(module_name, class_name, method, content)
 module {{module_name}}
 class {{class_name}}
 def initialize(@name : String)
 end

 def {{method}}
 {{content}} + @name
 end
 end
 end
end

This generates:
module Foo
class Bar
def initialize(@name : String)
end
#
def say
"hi " + @name
end
end
end
define_class Foo, Bar, say, "hi "

p Foo::Bar.new("John").say # => "hi John"

Conditionals
You use {% if condition %} ... {% end %} to conditionally generate code:

macro define_method(name, content)
 def {{name}}
 {% if content == 1 %}
 "one"
 {% elsif content == 2 %}
 "two"
 {% else %}
 {{content}}
 {% end %}
 end
end

define_method foo, 1
define_method bar, 2
define_method baz, 3

foo # => one
bar # => two
baz # => 3

Similar to regular code, Nop , NilLiteral and a false BoolLiteral are considered
falsey, while everything else is considered truthy.

Macro conditionals can be used outside a macro definition:

https://crystal-lang.org/api/Crystal/Macros/Nop.html
https://crystal-lang.org/api/Crystal/Macros/NilLiteral.html
https://crystal-lang.org/api/Crystal/Macros/BoolLiteral.html

Nil

199

{% if env("TEST") %}
 puts "We are in test mode"
{% end %}

Iteration
You can iterate a finite amount of times:

macro define_constants(count)
 {% for i in (1..count) %}
 PI_{{i.id}} = Math::PI * {{i}}
 {% end %}
end

define_constants(3)

PI_1 # => 3.14159...
PI_2 # => 6.28318...
PI_3 # => 9.42477...

To iterate an ArrayLiteral :

macro define_dummy_methods(names)
 {% for name, index in names %}
 def {{name.id}}
 {{index}}
 end
 {% end %}
end

define_dummy_methods [foo, bar, baz]

foo # => 0
bar # => 1
baz # => 2

The index variable in the above example is optional.

To iterate a HashLiteral :

macro define_dummy_methods(hash)
 {% for key, value in hash %}
 def {{key.id}}
 {{value}}
 end
 {% end %}
end

define_dummy_methods({foo: 10, bar: 20})
foo # => 10
bar # => 20

Macro iterations can be used outside a macro definition:

https://crystal-lang.org/api/Crystal/Macros/ArrayLiteral.html
https://crystal-lang.org/api/Crystal/Macros/HashLiteral.html

Nil

200

{% for name, index in ["foo", "bar", "baz"] %}
 def {{name.id}}
 {{index}}
 end
{% end %}

foo # => 0
bar # => 1
baz # => 2

Variadic arguments and splatting
A macro can accept variadic arguments:

macro define_dummy_methods(*names)
 {% for name, index in names %}
 def {{name.id}}
 {{index}}
 end
 {% end %}
end

define_dummy_methods foo, bar, baz

foo # => 0
bar # => 1
baz # => 2

The arguments are packed into an ArrayLiteral and passed to the macro.

Additionally, using * when interpolating an ArrayLiteral interpolates the
elements separated by commas:

macro println(*values)
 print {{*values}}, '\n'
end

println 1, 2, 3 # outputs 123\n

Type information
When a macro is invoked you can access the current scope, or type, with a
special instance variable: @type . The type of this variable is TypeNode , which
gives you access to type information at compile time.

Note that @type is always the instance type, even when the macro is invoked in a
class method.

For example:

https://crystal-lang.org/api/Crystal/Macros/ArrayLiteral.html
https://crystal-lang.org/api/Crystal/Macros/ArrayLiteral.html
https://crystal-lang.org/api/Crystal/Macros/TypeNode.html

Nil

201

macro add_describe_methods
 def describe
 "Class is: " + {{ @type.stringify }}
 end

 def self.describe
 "Class is: " + {{ @type.stringify }}
 end
end

class Foo
 add_describe_methods
end

Foo.new.describe # => "Class is Foo"
Foo.describe # => "Class is Foo"

Method information
When a macro is invoked you can access the method, the macro is in with a
special instance variable: @def . The type of this variable is Def unless the
macro is outside of a method, in this case it's NilLiteral .

Example:

module Foo
 def Foo.boo(arg1, arg2)
 {% @def.receiver %} # => Foo
 {% @def.name %} # => boo
 {% @def.args %} # => [arg1, arg2]
 end
end

Foo.boo(0, 1)

Constants
Macros can access constants. For example:

VALUES = [1, 2, 3]

{% for value in VALUES %}
 puts {{value}}
{% end %}

If the constant denotes a type, you get back a TypeNode .

Nested macros
It is possible to define a macro which generates one or more macro definitions.
You must escape macro expressions of the inner macro by preceding them with a
backslash character "\" to prevent them from being evaluated by the outer macro.

https://crystal-lang.org/api/Crystal/Macros/Def.html
https://crystal-lang.org/api/Crystal/Macros/NilLiteral.html
https://crystal-lang.org/api/Crystal/Macros/TypeNode.html

Nil

202

macro define_macros(*names)
 {% for name in names %}
 macro greeting_for_{{name.id}}(greeting)
 \{% if greeting == "hola" %}
 "¡hola {{name.id}}!"
 \{% else %}
 "\{{greeting.id}} {{name.id}}"
 \{% end %}
 end
 {% end %}
end

This generates:
#
macro greeting_for_alice
{% if greeting == "hola" %}
"¡hola alice!"
{% else %}
"{{greeting.id}} alice"
{% end %}
end
macro greeting_for_bob
{% if greeting == "hola" %}
"¡hola bob!"
{% else %}
"{{greeting.id}} bob"
{% end %}
end
define_macros alice, bob

greeting_for_alice "hello" # => "hello alice"
greeting_for_bob "hallo" # => "hallo bob"
greeting_for_alice "hej" # => "hej alice"
greeting_for_bob "hola" # => "¡hola bob!"

verbatim

Another way to define a nested macro is by using the special verbatim call. Using
this you will not be able to use any variable interpolation but will not need to
escape the inner macro characters.

Nil

203

macro define_macros(*names)
 {% for name in names %}
 macro greeting_for_{{name.id}}(greeting)

 # name will not be available within the verbatim block
 \{% name = {{name.stringify}} %}

 {% verbatim do %}
 {% if greeting == "hola" %}
 "¡hola {{name.id}}!"
 {% else %}
 "{{greeting.id}} {{name.id}}"
 {% end %}
 {% end %}
 end
 {% end %}
end

This generates:
#
macro greeting_for_alice
{% name = "alice" %}
{% if greeting == "hola" %}
"¡hola alice!"
{% else %}
"{{greeting.id}} alice"
{% end %}
end
macro greeting_for_bob
{% name = "bob" %}
{% if greeting == "hola" %}
"¡hola bob!"
{% else %}
"{{greeting.id}} bob"
{% end %}
end
define_macros alice, bob

greeting_for_alice "hello" # => "hello alice"
greeting_for_bob "hallo" # => "hallo bob"
greeting_for_alice "hej" # => "hej alice"
greeting_for_bob "hola" # => "¡hola bob!"

Notice the variables in the inner macro are not available within the verbatim
block. The contents of the block are transferred "as is", essentially as a string,
until re-examined by the compiler.

Comments
Macro expressions are evaluated both within comments as well as compilable
sections of code. This may be used to provide relevant documentation for
expansions:

{% for name, index in ["foo", "bar", "baz"] %}
 # Provides a placeholder {{name.id}} method. Always returns {{index}}.
 def {{name.id}}
 {{index}}
 end
{% end %}

Nil

204

This evaluation applies to both interpolation and directives. As a result of this,
macros cannot be commented out.

macro a
 # {% if false %}
 puts 42
 # {% end %}
end

a

The expression above will result in no output.

Pitfalls
When writing macros (especially outside of a macro definition) it is important to
remember that the generated code from the macro must be valid Crystal code by
itself even before it is merged into the main program's code. This means, for
example, a macro cannot generate a one or more when expressions of a case
statement unless case was a part of the generated code.

Here is an example of such an invalid macro:

Notice that case is not within the macro. The code generated by the macro
consists solely of two when expressions which, by themselves, is not valid Crystal
code. We must include case within the macro in order to make it valid by using
 begin and end :

{% begin %}
 case 42
 {% for klass in [Int32, String] %}
 when {{klass.id}}
 p "is {{klass}}"
 {% end %}
 end
{% end %}

case 42
{% for klass in [Int32, String] %} # Syntax Error: unexpected token: {% (expecting whe
 when {{klass.id}}
 p "is {{klass}}"
{% end %}
end

Nil

205

Macro methods
Macro defs allow you to define a method for a class hierarchy which is then
instantiated for each concrete subtype.

A def is implicitly considered a macro def if it contains a macro expression which
refers to @type . For example:

class Object
 def instance_vars_names
 {{ @type.instance_vars.map &.name.stringify }}
 end
end

class Person
 def initialize(@name : String, @age : Int32)
 end
end

person = Person.new "John", 30
person.instance_vars_names # => ["name", "age"]

In macro definitions, arguments are passed as their AST nodes, giving you
access to them in macro expansions ({{some_macro_argument}}). However that is
not true for macro defs. Here the argument list is that of the method generated by
the macro def. You cannot access their compile-time value.

class Object
 def has_instance_var?(name) : Bool
 # We cannot access name inside the macro expansion here,
 # instead we need to use the macro language to construct an array
 # and do the inclusion check at runtime.
 {{ @type.instance_vars.map &.name.stringify }}.includes? name
 end
end

person = Person.new "John", 30
person.has_instance_var?("name") # => true
person.has_instance_var?("birthday") # => false

Nil

206

Hooks
Special macros exist that are invoked in some situations as hooks, at compile
time:

 inherited is invoked when a subclass is defined. @type is the inheriting
type.
 included is invoked when a module is included. @type is the including type.
 extended is invoked when a module is extended. @type is the extending
type.
 method_missing is invoked when a method is not found.
 method_added is invoked when a new method is defined in the current scope.
 finished is invoked after instance variable types for all classes are known.

Example of inherited :

class Parent
 macro inherited
 def lineage
 "{{@type.name.id}} < Parent"
 end
 end
end

class Child < Parent
end

Child.new.lineage # => "Child < Parent"

Example of method_missing :

Example of method_added :

macro method_added(method)
 {% puts "Method added:", method.name.stringify %}
end

def generate_random_number
 4
end
=> Method added: generate_random_number

Both method_missing and method_added only apply to calls or methods in the same
class that the macro is defined in, or only in the top level if the macro is defined
outside of a class. For example:

macro method_missing(call)
 print "Got ", {{call.name.id.stringify}}, " with ", {{call.args.size}}, " arguments"
end

foo # Prints: Got foo with 0 arguments
bar 'a', 'b' # Prints: Got bar with 2 arguments

Nil

207

macro method_missing(call)
 puts "In outer scope, got call: ", {{ call.name.stringify }}
end

class SomeClass
 macro method_missing(call)
 puts "Inside SomeClass, got call: ", {{ call.name.stringify }}
 end
end

class OtherClass
end

This call is handled by the top-level `method_missing`
foo # => In outer scope, got call: foo

obj = SomeClass.new
This is handled by the one inside SomeClass
obj.bar # => Inside SomeClass, got call: bar

other = OtherClass.new
Neither OtherClass or its parents define a `method_missing` macro
other.baz # => Error: Undefined method 'baz' for OtherClass

 finished is called once a type has been completely defined - this includes
extensions on that class. Consider the following program:

macro print_methods
 {% puts @type.methods.map &.name %}
end

class Foo
 macro finished
 {% puts @type.methods.map &.name %}
 end

 print_methods
end

class Foo
 def bar
 puts "I'm a method!"
 end
end

Foo.new.bar

The print_methods macro will be run as soon as it is encountered - and will print
an empty list as there are no methods defined at that point. Once the second
declaration of Foo is compiled the finished macro will be run, which will print
 [bar] .

Nil

208

Fresh variables
Once macros generate code, they are parsed with a regular Crystal parser where
local variables in the context of the macro invocations are assumed to be defined.

This is better understood with an example:

macro update_x
 x = 1
end

x = 0
update_x
x # => 1

This can sometimes be useful to avoid repetitive code by deliberately
reading/writing local variables, but can also overwrite local variables by mistake.
To avoid this, fresh variables can be declared with %name :

macro dont_update_x
 %x = 1
 puts %x
end

x = 0
dont_update_x # outputs 1
x # => 0

Using %x in the above example, we declare a variable whose name is
guaranteed not to conflict with local variables in the current scope.

Additionally, fresh variables with respect to some other AST node can be declared
with %var{key1, key2, ..., keyN} . For example:

macro fresh_vars_sample(*names)
 # First declare vars
 {% for name, index in names %}
 print "Declaring: ", "%name{index}", '\n'
 %name{index} = {{index}}
 {% end %}

 # Then print them
 {% for name, index in names %}
 print "%name{index}: ", %name{index}, '\n'
 {% end %}
end

fresh_vars_sample a, b, c

Sample output:
Declaring: __temp_255
Declaring: __temp_256
Declaring: __temp_257
__temp_255: 0
__temp_256: 1
__temp_257: 2

Nil

209

In the above example, three indexed variables are declared, assigned values, and
then printed, displaying their corresponding indices.

Nil

210

Annotations
Annotations can be used to add metadata to certain features in the source code.
Types, methods and instance variables may be annotated. User-defined
annotations, such as the standard library's JSON::Field, are defined using the
 annotation keyword. A number of built-in annotations are provided by the
compiler.

Users can define their own annotations using the annotation keyword, which
works similarly to defining a class or struct .

annotation MyAnnotation
end

The annotation can then be applied to various items, including:

Instance and class methods
Instance variables
Classes, structs, enums, and modules

annotation MyAnnotation
end

@[MyAnnotation]
def foo
 "foo"
end

@[MyAnnotation]
class Klass
end

@[MyAnnotation]
module MyModule
end

Applications
Annotations are best used to store metadata about a given instance variable,
type, or method so that it can be read at compile time using macros. One of the
main benefits of annotations is that they are applied directly to instance
variables/methods, which causes classes to look more natural since a standard
macro is not needed to create these properties/methods.

A few applications for annotations:

Object Serialization

Have an annotation that when applied to an instance variable determines if that
instance variable should be serialized, or with what key. Crystal's
 JSON::Serializable and YAML::Serializable are examples of this.

https://crystal-lang.org/api/JSON/Field.html
https://crystal-lang.org/api/JSON/Serializable.html
https://crystal-lang.org/api/YAML/Serializable.html

Nil

211

ORMs

An annotation could be used to designate a property as an ORM column. The
name and type of the instance variable can be read off the TypeNode in addition to
the annotation; removing the need for any ORM specific macro. The annotation
itself could also be used to store metadata about the column, such as if it is
nullable, the name of the column, or if it is the primary key.

Fields
Data can be stored within an annotation.

annotation MyAnnotaion
end

The fields can either be a key/value pair
@[MyAnnotation(key: "value", value: 123)]

Or positional
@[MyAnnotation("foo", 123, false)]

Key/value

The values of annotation key/value pairs can be accessed at compile time via the
 [] method.

annotation MyAnnotation
end

@[MyAnnotation(value: 2)]
def annotation_value
 # The name can be a `String`, `Symbol`, or `MacroId`
 {{ @def.annotation(MyAnnotation)[:value] }}
end

annotation_value # => 2

The named_args method can be used to read all key/value pairs on an annotation
as a NamedTupleLiteral . This method is defined on all annotations by default, and
is unique to each applied annotation.

annotation MyAnnotation
end

@[MyAnnotation(value: 2, name: "Jim")]
def annotation_named_args
 {{ @def.annotation(MyAnnotation).named_args }}
end

annotation_named_args # => {value: 2, name: "Jim"}

Since this method returns a NamedTupleLiteral , all of the methods on that type are
available for use. Especially #double_splat which makes it easy to pass
annotation arguments to methods.

https://crystal-lang.org/api/Crystal/Macros/Annotation.html#%5B%5D%28name%3ASymbolLiteral%7CStringLiteral%7CMacroId%29%3AASTNode-instance-method
https://crystal-lang.org/api/Crystal/Macros/NamedTupleLiteral.html

Nil

212

annotation MyAnnotation
end

class SomeClass
 def initialize(@value : Int32, @name : String); end
end

@[MyAnnotation(value: 2, name: "Jim")]
def new_test
 {% begin %}
 SomeClass.new {{ @def.annotation(MyAnnotation).named_args.double_splat }}
 {% end %}
end

new_test # => #<SomeClass:0x5621a19ddf00 @name="Jim", @value=2>

Positional

Positional values can be accessed at compile time via the [] method; however,
only one index can be accessed at a time.

annotation MyAnnotation
end

@[MyAnnotation(1, 2, 3, 4)]
def annotation_read
 {% for idx in [0, 1, 2, 3, 4] %}
 {% value = @def.annotation(MyAnnotation)[idx] %}
 pp "{{ idx }} = {{ value }}"
 {% end %}
end

annotation_read

Which would print
"0 = 1"
"1 = 2"
"2 = 3"
"3 = 4"
"4 = nil"

The args method can be used to read all positional arguments on an annotation
as a TupleLiteral . This method is defined on all annotations by default, and is
unique to each applied annotation.

annotation MyAnnotation
end

@[MyAnnotation(1, 2, 3, 4)]
def annotation_args
 {{ @def.annotation(MyAnnotation).args }}
end

annotation_args # => {1, 2, 3, 4}

Since the return type of TupleLiteral is iterable, we can rewrite the previous
example in a better way. By extension, all of the methods on TupleLiteral are
available for use as well.

https://crystal-lang.org/api/Crystal/Macros/Annotation.html#%5B%5D%28index%3ANumberLiteral%29%3AASTNode-instance-method
https://crystal-lang.org/api/Crystal/Macros/TupleLiteral.html

Nil

213

annotation MyAnnotation
end

@[MyAnnotation(1, "foo", true, 17.0)]
def annotation_read
 {% for value, idx in @def.annotation(MyAnnotation).args %}
 pp "{{ idx }} = #{{{ value }}}"
 {% end %}
end

annotation_read

Which would print
"0 = 1"
"1 = foo"
"2 = true"
"3 = 17.0"

Reading
Annotations can be read off of a TypeNode , Def , or MetaVar using the
 .annotation(type : TypeNode) method. This method return an Annotation object
representing the applied annotation of the supplied type.

NOTE: If multiple annotations of the same type are applied, the .annotation
method will return the last one.

The @type and @def variables can be used to get a TypeNode or Def object to
use the .annotation method on. However, it is also possible to get TypeNode / Def
types using other methods on TypeNode . For example TypeNode.all_subclasses or
 TypeNode.methods , respectively.

The TypeNode.instance_vars can be used to get an array of instance variable
 MetaVar objects that would allow reading annotations defined on those instance
variables.

NOTE: TypeNode.instance_vars currently only works in the context of an
instance/class method.

https://crystal-lang.org/api/Crystal/Macros/TypeNode.html
https://crystal-lang.org/api/Crystal/Macros/Def.html
https://crystal-lang.org/api/Crystal/Macros/MetaVar.html
https://crystal-lang.org/api/master/Crystal/Macros/Annotation.html

Nil

214

annotation MyClass
end

annotation MyMethod
end

annotation MyIvar
end

@[MyClass]
class Foo
 pp {{ @type.annotation(MyClass).stringify }}

 @[MyIvar]
 @num : Int32 = 1

 @[MyIvar]
 property name : String = "jim"

 def properties
 {% for ivar in @type.instance_vars %}
 pp {{ ivar.annotation(MyIvar).stringify }}
 {% end %}
 end
end

@[MyMethod]
def my_method
 pp {{ @def.annotation(MyMethod).stringify }}
end

Foo.new.properties
my_method
pp {{ Foo.annotation(MyClass).stringify }}

Which would print
"@[MyClass]"
"@[MyIvar]"
"@[MyIvar]"
"@[MyMethod]"
"@[MyClass]"

Reading Multiple Annotations

If there are multiple annotations of the same type applied to the same instance
variable/method/type, the .annotations(type : TypeNode) method can be used. This
will work on anything that .annotation(type : TypeNode) would, but instead returns
an ArrayLiteral(Annotation) .

Nil

215

annotation MyAnnotation
end

@[MyAnnotation("foo")]
@[MyAnnotation(123)]
@[MyAnnotation(123)]
def annotation_read
 {% for ann, idx in @def.annotations(MyAnnotation) %}
 pp "Annotation {{ idx }} = {{ ann[0].id }}"
 {% end %}
end

annotation_read

Which would print
"Annotation 0 = foo"
"Annotation 1 = 123"
"Annotation 2 = 123"

Nil

216

The Crystal standard library includes some pre-defined annotations:

Link
Extern
ThreadLocal
Packed
AlwaysInline
NoInline
ReturnsTwice
Raises
CallConvention
Flags

Link
Tells the compiler how to link a C library. This is explained in the lib section.

Extern
Marking a Crystal struct with this attribute makes it possible to use it in lib
declarations:

@[Extern]
struct MyStruct
end

lib MyLib
 fun my_func(s : MyStruct) # OK (gives an error without the Extern attribute)
end

You can also make a struct behave like a C union (this can be pretty unsafe):

A struct to easily convert between Int32 codepoints and Chars
@[Extern(union: true)]
struct Int32OrChar
 property int = 0
 property char = '\0'
end

s = Int32OrChar.new
s.char = 'A'
s.int # => 65

s.int = 66
s.char # => 'B'

ThreadLocal
The @[ThreadLocal] attribute can be applied to class variables and C external
variables. It makes them be thread local.

Nil

217

class DontUseThis
 # One for each thread
 @[ThreadLocal]
 @@values = [] of Int32
end

ThreadLocal is used in the standard library to implement the runtime and
shouldn't be needed or used outside it.

Packed
Marks a C struct as packed, which prevents the automatic insertion of padding
bytes between fields. This is typically only needed if the C library explicitly uses
packed structs.

AlwaysInline
Gives a hint to the compiler to always inline a method:

@[AlwaysInline]
def foo
 1
end

NoInline
Tells the compiler to never inline a method call. This has no effect if the method
yields, since functions which yield are always inlined.

@[NoInline]
def foo
 1
end

ReturnsTwice
Marks a method or lib fun as returning twice. The C setjmp is an example of such
a function.

Raises
Marks a method or lib fun as potentially raising an exception. This is explained in
the callbacks section.

CallConvention

Nil

218

Indicates the call convention of a lib fun. For example:

lib LibFoo
 @[CallConvention("X86_StdCall")]
 fun foo : Int32
end

The list of valid call conventions is:

C (the default)
Fast
Cold
WebKit_JS
AnyReg
X86_StdCall
X86_FastCall

They are explained here.

Flags
Marks an enum as a "flags enum", which changes the behaviour of some of its
methods, like to_s .

http://llvm.org/docs/LangRef.html#calling-conventions

Nil

219

Low-level primitives
Some low-level primitives are provided. They are mostly useful for interfacing with
C libraries and for low-level code.

Nil

220

pointerof
The pointerof expression returns a Pointer that points to the contents of a
variable or instance variable.

An example with a variable:

a = 1

ptr = pointerof(a)
ptr.value = 2

a # => 2

An example with an instance variable:

class Point
 def initialize(@x : Int32, @y : Int32)
 end

 def x
 @x
 end

 def x_ptr
 pointerof(@x)
 end
end

point = Point.new 1, 2

ptr = point.x_ptr
ptr.value = 10

point.x # => 10

Because pointerof involves pointers, it is considered unsafe.

http://crystal-lang.org/api/Pointer.html

Nil

221

sizeof
The sizeof expression returns an Int32 with the size in bytes of a given type.
For example:

sizeof(Int32) # => 4
sizeof(Int64) # => 8

For Reference types, the size is the same as the size of a pointer:

On a 64 bits machine
sizeof(Pointer(Int32)) # => 8
sizeof(String) # => 8

This is because a Reference's memory is allocated on the heap and a pointer to it
is passed around. To get the effective size of a class, use instance_sizeof.

The argument to sizeof is a type and is often combined with typeof:

a = 1
sizeof(typeof(a)) # => 4

http://crystal-lang.org/api/Reference.html

Nil

222

instance_sizeof
The instance_sizeof expression returns an Int32 with the instance size of a
given class. For example:

class Point
 def initialize(@x, @y)
 end
end

Point.new 1, 2

2 x Int32 = 2 x 4 = 8
instance_sizeof(Point) # => 12

Even though the instance has two Int32 fields, the compiler always includes an
extra Int32 field for the type id of the object. That's why the instance size ends
up being 12 and not 8.

Nil

223

offsetof
An offsetof expression returns the byte offset of an instance variable in a struct
or class type. It accepts the type as first argument and the instance variable name
prefixed by an @ as second argument:

offsetof(Type, @ivar)

This is a low-level primitive and only useful if a C API needs to directly interface
with the data layout of a Crystal type.

Example:

struct Foo
 @x = 0_i64
 @y = 34_i32
end

offsetof(Foo, @y) # => 8

Nil

224

Uninitialized variable declaration
Crystal allows declaring uninitialized variables:

x = uninitialized Int32
x # => some random value, garbage, unreliable

This is unsafe code and is almost always used in low-level code for declaring
uninitialized StaticArray buffers without a performance penalty:

buffer = uninitialized UInt8[256]

The buffer is allocated on the stack, avoiding a heap allocation.

The type after the uninitialized keyword follows the type grammar.

http://crystal-lang.org/api/StaticArray.html

Nil

225

Compile-time flags
Types, methods and generally any part of your code can be conditionally defined
based on some flags available at compile time. These flags are by default read
from the hosts LLVM Target Triple, split on - . To get the target you can execute
 llvm-config --host-target .

$ llvm-config --host-target
x86_64-unknown-linux-gnu

so the flags are: x86_64, unknown, linux, gnu

To define a flag, simply use the --define or -D option, like so:

crystal some_program.cr -Dflag

Additionally, if a program is compiled with --release , the release flag will be set.

You can check if a flag is defined with the flag? macro method:

{% if flag?(:x86_64) %}
 # some specific code for 64 bits platforms
{% else %}
 # some specific code for non-64 bits platforms
{% end %}

 flag? returns a boolean, so you can use it with && and || :

{% if flag?(:linux) && flag?(:x86_64) %}
 # some specific code for linux 64 bits
{% end %}

These flags are generally used in C bindings to conditionally define types and
functions. For example, the very well known size_t type is defined like this in
Crystal:

lib C
 {% if flag?(:x86_64) %}
 alias SizeT = UInt64
 {% else %}
 alias SizeT = UInt32
 {% end %}
end

http://llvm.org/docs/LangRef.html#target-triple

Nil

226

Cross-compilation
Crystal supports a basic form of cross compilation.

In order to achieve this, the compiler executable provides two flags:

 --cross-compile : When given enables cross compilation mode
 --target : the LLVM Target Triple to use and set the default compile-time
flags from

To get the --target flags you can execute llvm-config --host-target using an
installed LLVM 3.5. For example on a Linux it could say "x86_64-unknown-linux-
gnu".

If you need to set any compile-time flags not set implicitly through --target , you
can use the -D command line flag.

Using these two, we can compile a program in a Mac that will run on that Linux
like this:

crystal build your_program.cr --cross-compile --target "x86_64-unknown-linux-gnu"

This will generate a .o (Object file) and will print a line with a command to
execute on the system we are trying to cross-compile to. For example:

cc your_program.o -o your_program -lpcre -lrt -lm -lgc -lunwind

You must copy this .o file to that system and execute those commands. Once
you do this the executable will be available in that target system.

This procedure is usually done with the compiler itself to port it to new platforms
where a compiler is not yet available. Because in order to compile a Crystal
compiler we need an older Crystal compiler, the only two ways to generate a
compiler for a system where there isn't a compiler yet are:

We checkout the latest version of the compiler written in Ruby, and from that
compiler we compile the next versions until the current one.
We create a .o file in the target system and from that file we create a
compiler.

The first alternative is long and cumbersome, while the second one is much
easier.

Cross-compiling can be done for other executables, but its main target is the
compiler. If Crystal isn't available in some system you can try cross-compiling it
there.

http://en.wikipedia.org/wiki/Cross_compiler
http://llvm.org/docs/LangRef.html#target-triple
http://en.wikipedia.org/wiki/Object_file

Nil

227

C bindings
Crystal allows you to bind to existing C libraries without writing a single line in C.

Additionally, it provides some conveniences like out and to_unsafe so writing
bindings is as painless as possible.

Nil

228

lib
A lib declaration groups C functions and types that belong to a library.

@[Link("pcre")]
lib LibPCRE
end

Although not enforced by the compiler, a lib 's name usually starts with Lib .

Attributes are used to pass flags to the linker to find external libraries:

 @[Link("pcre")] will pass -lpcre to the linker, but the compiler will first try to
use pkg-config.
 @[Link(ldflags: "...")] will pass those flags directly to the linker, without
modification. For example: @[Link(ldflags: "-lpcre")] . A common technique
is to use backticks to execute commands: @[Link(ldflags: "`pkg-config libpcre
--libs`")] .
 @[Link(framework: "Cocoa")] will pass -framework Cocoa to the linker (only
useful in macOS).

Attributes can be omitted if the library is implicitly linked, as in the case of libc.

http://en.wikipedia.org/wiki/Pkg-config

Nil

229

fun
A fun declaration inside a lib binds to a C function.

lib C
 # In C: double cos(double x)
 fun cos(value : Float64) : Float64
end

Once you bind it, the function is available inside the C type as if it was a class
method:

C.cos(1.5) # => 0.0707372

You can omit the parentheses if the function doesn't have arguments (and omit
them in the call as well):

lib C
 fun getch : Int32
end

C.getch

If the return type is void you can omit it:

lib C
 fun srand(seed : UInt32)
end

C.srand(1_u32)

You can bind to variadic functions:

lib X
 fun variadic(value : Int32, ...) : Int32
end

X.variadic(1, 2, 3, 4)

Note that there are no implicit conversions (except to_unsafe , which is explained
later) when invoking a C function: you must pass the exact type that is expected.
For integers and floats you can use the various to_... methods.

Function names
Function names in a lib definition can start with an upper case letter. That's
different from methods and function definitions outside a lib , which must start
with a lower case letter.

Nil

230

Function names in Crystal can be different from the C name. The following
example shows how to bind the C function name SDL_Init as LibSDL.init in
Crystal.

lib LibSDL
 fun init = SDL_Init(flags : UInt32) : Int32
end

The C name can be put in quotes to be able to write a name that is not a valid
identifier:

lib LLVMIntrinsics
 fun ceil_f32 = "llvm.ceil.f32"(value : Float32) : Float32
end

This can also be used to give shorter, nicer names to C functions, as these tend
to be long and are usually prefixed with the library name.

Types in C Bindings
The valid types to use in C bindings are:

Primitive types (Int8 , ..., Int64 , UInt8 , ..., UInt64 , Float32 , Float64)
Pointer types (Pointer(Int32) , which can also be written as Int32*)
Static arrays (StaticArray(Int32, 8) , which can also be written as Int32[8])
Function types (Function(Int32, Int32) , which can also be written as Int32 ->
Int32)
Other struct , union , enum , type or alias declared previously.
 Void : the absence of a return value.
 NoReturn : similar to Void , but the compiler understands that no code can be
executed after that invocation.
Crystal structs marked with the @[Extern] attribute

Refer to the type grammar for the notation used in fun types.

The standard library defines the LibC lib with aliases for common C types, like
 int , short , size_t . Use them in bindings like this:

lib MyLib
 fun my_fun(some_size : LibC::SizeT)
end

Note: The C char type is UInt8 in Crystal, so a char* or a const char* is
 UInt8* . The Char type in Crystal is a unicode codepoint so it is represented by
four bytes, making it similar to an Int32 , not to an UInt8 . There's also the alias
 LibC::Char if in doubt.

https://github.com/crystal-lang/crystal/blob/master/src/lib_c.cr

Nil

231

out
Consider the waitpid function:

lib C
 fun waitpid(pid : Int32, status_ptr : Int32*, options : Int32) : Int32
end

The documentation of the function says:

The status information from the child process is stored in the object
that status_ptr points to, unless status_ptr is a null pointer.

We can use this function like this:

status_ptr = uninitialized Int32

C.waitpid(pid, pointerof(status_ptr), options)

In this way we pass a pointer of status_ptr to the function for it to fill its value.

There's a simpler way to write the above by using an out parameter:

C.waitpid(pid, out status_ptr, options)

The compiler will automatically declare a status_ptr variable of type Int32 ,
because the argument is an Int32* .

This will work for any type, as long as the argument is a pointer of that type (and,
of course, as long as the function does fill the value the pointer is pointing to).

http://www.gnu.org/software/libc/manual/html_node/Process-Completion.html

Nil

232

to_unsafe
If a type defines a to_unsafe method, when passing it to C the value returned by
this method will be passed. For example:

lib C
 fun exit(status : Int32) : NoReturn
end

class IntWrapper
 def initialize(@value)
 end

 def to_unsafe
 @value
 end
end

wrapper = IntWrapper.new(1)
C.exit(wrapper) # wrapper.to_unsafe is passed to C function which has type Int32

This is very useful for defining wrappers of C types without having to explicitly
transform them to their wrapped values.

For example, the String class implements to_unsafe to return UInt8* :

lib C
 fun printf(format : UInt8*, ...) : Int32
end

a = 1
b = 2
C.printf "%d + %d = %d\n", a, b, a + b

Nil

233

struct
A struct declaration inside a lib declares a C struct.

lib C
 # In C:
 #
 # struct TimeZone {
 # int minutes_west;
 # int dst_time;
 # };
 struct TimeZone
 minutes_west : Int32
 dst_time : Int32
 end
end

You can also specify many fields of the same type:

lib C
 struct TimeZone
 minutes_west, dst_time : Int32
 end
end

Recursive structs work just like you expect them to:

lib C
 struct LinkedListNode
 prev, _next : LinkedListNode*
 end

 struct LinkedList
 head : LinkedListNode*
 end
end

To create an instance of a struct use new :

tz = C::TimeZone.new

This allocates the struct on the stack.

A C struct starts with all its fields set to "zero": integers and floats start at zero,
pointers start with an address of zero, etc.

To avoid this initialization you can use uninitialized :

tz = uninitialized C::TimeZone
tz.minutes_west # => some garbage value

You can set and get its properties:

Nil

234

tz = C::TimeZone.new
tz.minutes_west = 1
tz.minutes_west # => 1

If the assigned value is not exactly the same as the property's type, to_unsafe will
be tried.

You can also initialize some fields with a syntax similar to named arguments:

tz = C::TimeZone.new minutes_west: 1, dst_time: 2
tz.minutes_west # => 1
tz.dst_time # => 2

A C struct is passed by value (as a copy) to functions and methods, and also
passed by value when it is returned from a method:

def change_it(tz)
 tz.minutes_west = 1
end

tz = C::TimeZone.new
change_it tz
tz.minutes_west # => 0

Refer to the type grammar for the notation used in struct field types.

Nil

235

union
A union declaration inside a lib declares a C union:

lib U
 # In C:
 #
 # union IntOrFloat {
 # int some_int;
 # double some_float;
 # };
 union IntOrFloat
 some_int : Int32
 some_float : Float64
 end
end

To create an instance of a union use new :

value = U::IntOrFloat.new

This allocates the union on the stack.

A C union starts with all its fields set to "zero": integers and floats start at zero,
pointers start with an address of zero, etc.

To avoid this initialization you can use uninitialized :

value = uninitialized U::IntOrFloat
value.some_int # => some garbage value

You can set and get its properties:

value = U::IntOrFloat.new
value.some_int = 1
value.some_int # => 1
value.some_float # => 4.94066e-324

If the assigned value is not exactly the same as the property's type, to_unsafe will
be tried.

A C union is passed by value (as a copy) to functions and methods, and also
passed by value when it is returned from a method:

def change_it(value)
 value.some_int = 1
end

value = U::IntOrFloat.new
change_it value
value.some_int # => 0

Refer to the type grammar for the notation used in union field types.

Nil

236

enum
An enum declaration inside a lib declares a C enum:

lib X
 # In C:
 #
 # enum SomeEnum {
 # Zero,
 # One,
 # Two,
 # Three,
 # };
 enum SomeEnum
 Zero
 One
 Two
 Three
 end
end

As in C, the first member of the enum has a value of zero and each successive
value is incremented by one.

To use a value:

X::SomeEnum::One # => One

You can specify the value of a member:

lib X
 enum SomeEnum
 Ten = 10
 Twenty = 10 * 2
 ThirtyTwo = 1 << 5
 end
end

As you can see, some basic math is allowed for a member value: + , - , * , / ,
 & , | , << , >> and % .

The type of an enum member is Int32 by default, even if you specify a different
type in a constant value:

lib X
 enum SomeEnum
 A = 1_u32
 end
end

X::SomeEnum # => 1_i32

However, you can change this default type:

Nil

237

lib X
 enum SomeEnum : Int8
 Zero
 Two = 2
 end
end

X::SomeEnum::Zero # => 0_i8
X::SomeEnum::Two # => 2_i8

You can use an enum as a type in a fun argument or struct or union
members:

lib X
 enum SomeEnum
 One
 Two
 end

 fun some_fun(value : SomeEnum)
end

Nil

238

Variables
Variables exposed by a C library can be declared inside a lib declaration using
a global-variable-like declaration:

lib C
 $errno : Int32
end

Then it can be get and set:

C.errno # => some value
C.errno = 0
C.errno # => 0

A variable can be marked as thread local with an attribute:

lib C
 @[ThreadLocal]
 $errno : Int32
end

Refer to the type grammar for the notation used in external variables types.

Nil

239

Constants
You can also declare constants inside a lib declaration:

@[Link("pcre")]
lib PCRE
 INFO_CAPTURECOUNT = 2
end

PCRE::INFO_CAPTURECOUNT # => 2

Nil

240

type
A type declaration inside a lib declares a kind of C typedef , but stronger:

lib X
 type MyInt = Int32
end

Unlike C, Int32 and MyInt are not interchangeable:

lib X
 type MyInt = Int32

 fun some_fun(value : MyInt)
end

X.some_fun 1 # Error: argument 'value' of 'X#some_fun' must be X::MyInt, not Int32

Thus, a type declaration is useful for opaque types that are created by the C
library you are wrapping. An example of this is the C FILE type, which you can
obtain with fopen .

Refer to the type grammar for the notation used in typedef types.

Nil

241

alias
An alias declaration inside a lib declares a C typedef :

lib X
 alias MyInt = Int32
end

Now Int32 and MyInt are interchangeable:

lib X
 alias MyInt = Int32

 fun some_fun(value : MyInt)
end

X.some_fun 1 # OK

An alias is most useful to avoid writing long types over and over, but also to
declare a type based on compile-time flags:

lib C
 {% if flag?(:x86_64) %}
 alias SizeT = Int64
 {% else %}
 alias SizeT = Int32
 {% end %}

 fun memcmp(p1 : Void*, p2 : Void*, size : C::SizeT) : Int32
end

Refer to the type grammar for the notation used in alias types.

Nil

242

Callbacks
You can use function types in C declarations:

lib X
 # In C:
 #
 # void callback(int (*f)(int));
 fun callback(f : Int32 -> Int32)
end

Then you can pass a function (a Proc) like this:

f = ->(x : Int32) { x + 1 }
X.callback(f)

If you define the function inline in the same call you can omit the argument types,
the compiler will add the types for you based on the fun signature:

X.callback ->(x) { x + 1 }

Note, however, that functions passed to C can't form closures. If the compiler
detects at compile-time that a closure is being passed, an error will be issued:

y = 2
X.callback ->(x) { x + y } # Error: can't send closure to C function

If the compiler can't detect this at compile-time, an exception will be raised at
runtime.

Refer to the type grammar for the notation used in callbacks and procs types.

If you want to pass NULL instead of a callback, just pass nil :

Same as callback(NULL) in C
X.callback nil

Passing a closure to a C function

Most of the time a C function that allows setting a callback also provide an
argument for custom data. This custom data is then sent as an argument to the
callback. For example, suppose a C function that invokes a callback at every tick,
passing that tick:

lib LibTicker
 fun on_tick(callback : (Int32, Void* ->), data : Void*)
end

To properly define a wrapper for this function we must send the Proc as the
callback data, and then convert that callback data to the Proc and finally invoke it.

http://crystal-lang.org/api/Proc.html

Nil

243

module Ticker
 # The callback for the user doesn't have a Void*
 @@box : Pointer(Void)?

 def self.on_tick(&callback : Int32 ->)
 # Since Proc is a {Void*, Void*}, we can't turn that into a Void*, so we
 # "box" it: we allocate memory and store the Proc there
 boxed_data = Box.box(callback)

 # We must save this in Crystal-land so the GC doesn't collect it (*)
 @@box = boxed_data

 # We pass a callback that doesn't form a closure, and pass the boxed_data as
 # the callback data
 LibTicker.on_tick(->(tick, data) {
 # Now we turn data back into the Proc, using Box.unbox
 data_as_callback = Box(typeof(callback)).unbox(data)
 # And finally invoke the user's callback
 data_as_callback.call(tick)
 }, boxed_data)
 end
end

Ticker.on_tick do |tick|
 puts tick
end

Note that we save the boxed callback in @@box . The reason is that if we don't do
it, and our code doesn't reference it anymore, the GC will collect it. The C library
will of course store the callback, but Crystal's GC has no way of knowing that.

Raises attribute
If a C function executes a user-provided callback that might raise, it must be
annotated with the @[Raises] attribute.

The compiler infers this attribute for a method if it invokes a method that is
marked as @[Raises] or raises (recursively).

However, some C functions accept callbacks to be executed by other C functions.
For example, suppose a fictitious library:

lib LibFoo
 fun store_callback(callback : ->)
 fun execute_callback
end

LibFoo.store_callback ->{ raise "OH NO!" }
LibFoo.execute_callback

If the callback passed to store_callback raises, then execute_callback will raise.
However, the compiler doesn't know that execute_callback can potentially raise
because it is not marked as @[Raises] and the compiler has no way to figure this
out. In these cases you have to manually mark such functions:

Nil

244

lib LibFoo
 fun store_callback(callback : ->)

 @[Raises]
 fun execute_callback
end

If you don't mark them, begin/rescue blocks that surround this function's calls
won't work as expected.

Nil

245

Unsafe code
These parts of the language are considered unsafe:

Code involving raw pointers: the Pointer type and pointerof.
The allocate class method.
Code involving C bindings
Uninitialized variable declaration

"Unsafe" means that memory corruption, segmentation faults and crashes are
possible to achieve. For example:

a = 1
ptr = pointerof(a)
ptr[100_000] = 2 # undefined behaviour, probably a segmentation fault

However, regular code usually never involves pointer manipulation or uninitialized
variables. And C bindings are usually wrapped in safe wrappers that include null
pointers and bounds checks.

No language is 100% safe: some parts will inevitably be low-level, interface with
the operating system and involve pointer manipulation. But once you abstract that
and operate on a higher level, and assume (after mathematical proof or thorough
testing) that the lower grounds are safe, you can be confident that your entire
codebase is safe.

http://crystal-lang.org/api/Pointer.html

Nil

246

Conventions
Follow these conventions so your code will be more accessible to other
developers.

Use standard coding style so your project will be navigable and readable to
others.
Write documentation to express the purpose of your code and support the
 crystal docs generator.

Nil

247

Coding Style
This style is used in the standard library. You can use it in your own project to
make it familiar to other developers.

Naming
Type names are camelcased. For example:

class ParseError < Exception
end

module HTTP
 class RequestHandler
 end
end

alias NumericValue = Float32 | Float64 | Int32 | Int64

lib LibYAML
end

struct TagDirective
end

enum Time::DayOfWeek
end

Method names are underscore-cased. For example:

class Person
 def first_name
 end

 def date_of_birth
 end

 def homepage_url
 end
end

Variable names are underscore-cased. For example:

class Greeting
 @@default_greeting = "Hello world"

 def initialize(@custom_greeting = nil)
 end

 def print_greeting
 greeting = @custom_greeting || @@default_greeting
 puts greeting
 end
end

Nil

248

Constants are screaming-cased. For example:

LUCKY_NUMBERS = [3, 7, 11]
DOCUMENTATION_URL = "http://crystal-lang.org/docs"

Acronyms

In class names, acronyms are all-uppercase. For example, HTTP , and LibXML .

In method names, acronyms are all-lowercase. For example #from_json , #to_io .

Libs

 Lib names are prefixed with Lib . For example: LibC , LibEvent2 .

Directory and File Names

Within a project:

 / contains a readme, any project configurations (eg, CI or editor configs),
and any other project-level documentation (eg, changelog or contributing
guide).
 src/ contains the project's source code.
 spec/ contains the project's specs, which can be run with crystal spec .
 bin/ contains any executables.

File paths match the namespace of their contents. Files are named after the class
or namespace they define, with underscore-case.

For example, HTTP::WebSocket is defined in src/http/web_socket.cr .

Whitespace
Use two spaces to indent code inside namespaces, methods, blocks or other
nested contexts. For example:

module Scorecard
 class Parser
 def parse(score_text)
 begin
 score_text.scan(SCORE_PATTERN) do |match|
 handle_match(match)
 end
 rescue err : ParseError
 # handle error ...
 end
 end
 end
end

Within a class, separate method definitions, constants and inner class definitions
with one newline. For example:

Nil

249

module Money
 CURRENCIES = {
 "EUR" => 1.0,
 "ARS" => 10.55,
 "USD" => 1.12,
 "JPY" => 134.15,
 }

 class Amount
 getter :currency, :value

 def initialize(@currency, @value)
 end
 end

 class CurrencyConversion
 def initialize(@amount, @target_currency)
 end

 def amount
 # implement conversion ...
 end
 end
end

Nil

250

Documenting code
Crystal can generate documentation from comments using a subset of Markdown.

To generate documentation for a project, invoke crystal docs . By default this will
create a docs directory, with a docs/index.html entry point. For more details see
Using the compiler – Creating documentation.

Documentation should be positioned right above definitions of classes,
modules, and methods. Leave no blanks between them.

A unicorn is a **legendary animal** (see the `Legendary` module) that has been
described since antiquity as a beast with a large, spiraling horn projecting
from its forehead.
class Unicorn
end

Bad: This is not attached to any class.

class Legendary
end

The documentation of a method is included into the method summary and the
method details. The former includes only the first line, the latter includes the
entire documentation. In short, it is preferred to:

1. State a method's purpose or functionality in the first line.
2. Supplement it with details and usages after that.

For instance:

Returns the number of horns this unicorn has.
#
```
Unicorn.new.horns # => 1
```
def horns
 @horns
end

Use the third person: Returns the number of horns this unicorn has instead of
 Return the number of horns this unicorn has .

Parameter names should be italicized (surrounded with single asterisks * or
underscores _):

Creates a unicorn with the specified number of *horns*.
def initialize(@horns = 1)
 raise "Not a unicorn" if @horns != 1
end

Code blocks that have Crystal code can be surrounded with triple backticks
or indented with four spaces.

https://daringfireball.net/projects/markdown/
file:///tmp/calibre_4.19.0_tmp_jkxmb1xc/using_the_compiler#crystal-docs

Nil

251

```
unicorn = Unicorn.new
unicorn.speak
```

or

unicorn = Unicorn.new
unicorn.speak

Text blocks, for example to show program output, must be surrounded with
triple backticks followed by the "text" keyword.

```text
"I'm a unicorn"
```

To automatically link to other types, enclose them with single backticks.

the `Legendary` module

To automatically link to methods of the currently documented type, use a
hash like #horns or #index(char) , and enclose it with single backticks.

To automatically link to methods in other types, do OtherType#method(arg1,
arg2) or just OtherType#method , and enclose it with single backticks.

For example:

Check the number of horns with `#horns`.
See what a unicorn would say with `Unicorn#speak`.

To show the value of an expression inside code blocks, use # => .

1 + 2 # => 3
Unicorn.new.speak # => "I'm a unicorn"

Use :ditto: to use the same comment as in the previous declaration.

:ditto:
def number_of_horns
 horns
end

Use :nodoc: to hide public declarations from the generated documentation.
Private and protected methods are always hidden.

class Unicorn
 # :nodoc:
 class Helper
 end
end

Nil

252

Inheriting Documentation

When an instance method has no doc comment, but a method with the same
signature exists in a parent type, the documentation is inherited from the parent
method.

For example:

abstract class Animal
 # Returns the name of `self`.
 abstract def name : String
end

class Unicorn < Animal
 def name : String
 "unicorn"
 end
end

The documentation for Unicorn#name would be:

Description copied from class `Animal`

Returns the name of `self`.

The child method can use :inherit: to explicitly copy the parent's
documentation, without the Description copied from ... text. :inherit: can also
be used to inject the parent's documentation into additional documentation on the
child.

For example:

abstract class Parent
 # Some documentation common to every *id*.
 abstract def id : Int32
end

class Child < Parent
 # Some documentation specific to *id*'s usage within `Child`.
 #
 # :inherit:
 def id : Int32
 -1
 end
end

The documentation for Child#id would be:

Some documentation specific to *id*'s usage within `Child`.

Some documentation common to every *id*.

NOTE: Inheriting documentation only works on instance, non-constructor
methods.

Flagging Classes, Modules, and Methods

Nil

253

Given a valid keyword, Crystal will automatically generate visual flags that help
highlight problems, notes and/or possible issues.

The supported flag keywords are:

BUG
DEPRECATED
FIXME
NOTE
OPTIMIZE
TODO

Flag keywords must be the first word in their respective line and must be in all
caps. An optional trailing colon is preferred for readability.

Makes the unicorn speak to STDOUT
#
NOTE: Although unicorns don't normally talk, this one is special
TODO: Check if unicorn is asleep and raise exception if not able to speak
TODO: Create another `speak` method that takes and prints a string
def speak
 puts "I'm a unicorn"
end

Makes the unicorn talk to STDOUT
#
DEPRECATED: Use `speak`
def talk
 puts "I'm a unicorn"
end

Use Crystal's code formatter

Crystal's built-in code formatter can be used not just to format your code, but also
to format code samples included in documentation blocks.

This is done automatically when crystal tool format is invoked, which will
automatically format all .cr files in current directory.

To format a single file:

$ crystal tool format file.cr

To format all .cr files within a directory:

$ crystal tool format src/

Use this tool to unify code styles and to submit documentation improvements to
Crystal itself.

The formatter is also fast, so very little time is lost if you format the entire project
instead of a single file.

A Complete Example

Nil

254

A unicorn is a **legendary animal** (see the `Legendary` module) that has been
described since antiquity as a beast with a large, spiraling horn projecting
from its forehead.
#
To create a unicorn:
#
```
unicorn = Unicorn.new
unicorn.speak
```
#
The above produces:
#
```text
"I'm a unicorn"
```
#
Check the number of horns with `#horns`.
class Unicorn
 include Legendary

 # Creates a unicorn with the specified number of *horns*.
 def initialize(@horns = 1)
 raise "Not a unicorn" if @horns != 1
 end

 # Returns the number of horns this unicorn has
 #
 # ```
 # Unicorn.new.horns # => 1
 # ```
 def horns
 @horns
 end

 # :ditto:
 def number_of_horns
 horns
 end

 # Makes the unicorn speak to STDOUT
 def speak
 puts "I'm a unicorn"
 end

 # :nodoc:
 class Helper
 end
end

Nil

255

Database
To access a relational database you will need a shard designed for the database
server you want to use. The package crystal-lang/crystal-db offers a unified api
across different drivers.

The following packages are compliant with crystal-db

crystal-lang/crystal-sqlite3 for sqlite
crystal-lang/crystal-mysql for mysql & mariadb
will/crystal-pg for postgres

This guide presents the api of crystal-db, the sql commands might need to be
adapted for the concrete driver due to differences between postgres, mysql and
sqlite.

Also some drivers may offer additional functionality like postgres LISTEN / NOTIFY .

Installing the shard
Choose the appropriate driver from the list above and add it as any shard to your
application's shard.yml

There is no need to explicitly require crystal-lang/crystal-db

During this guide crystal-lang/crystal-mysql will be used.

dependencies:
 mysql:
 github: crystal-lang/crystal-mysql

Open database
 DB.open will allow you to easily connect to a database using a connection uri. The
schema of the uri determines the expected driver. The following sample connects
to a local mysql database named test with user root and password blank.

require "db"
require "mysql"

DB.open "mysql://root@localhost/test" do |db|
 # ... use db to perform queries
end

Other connection uris are

 sqlite3:///path/to/data.db

 mysql://user:password@server:port/database

 postgres://server:port/database

https://github.com/crystal-lang/crystal-db
https://github.com/crystal-lang/crystal-sqlite3
https://github.com/crystal-lang/crystal-mysql
https://github.com/will/crystal-pg

Nil

256

Alternatively you can use a non yielding DB.open method as long as
 Database#close is called at the end.

require "db"
require "mysql"

db = DB.open "mysql://root@localhost/test"
begin
 # ... use db to perform queries
ensure
 db.close
end

Exec
To execute sql statements you can use Database#exec

db.exec "create table contacts (name varchar(30), age int)"

To avoid SQL injection values can be provided as query parameters. The syntax
for using query parameters depends on the database driver because they are
typically just passed through to the database. MySQL uses ? for parameter
expansion and assignment is based on argument order. PostgreSQL uses $n
where n is the ordinal number of the argument (starting with 1).

MySQL
db.exec "insert into contacts values (?, ?)", "John", 30
Postgres
db.exec "insert into contacts values ($1, $2)", "Sarah", 33

Query
To perform a query and get the result set use Database#query , arguments can be
used as in Database#exec .

 Database#query returns a ResultSet that needs to be closed. As in Database#open ,
if called with a block, the ResultSet will be closed implicitly.

db.query "select name, age from contacts order by age desc" do |rs|
 rs.each do
 # ... perform for each row in the ResultSet
 end
end

When reading values from the database there is no type information during
compile time that crystal can use. You will need to call rs.read(T) with the type
 T you expect to get from the database.

https://owasp.org/www-community/attacks/SQL_Injection

Nil

257

db.query "select name, age from contacts order by age desc" do |rs|
 rs.each do
 name = rs.read(String)
 age = rs.read(Int32)
 puts "#{name} (#{age})"
 # => Sarah (33)
 # => John Doe (30)
 end
end

There are many convenient query methods built on top of #query .

You can read multiple columns at once:

name, age = rs.read(String, Int32)

Or read a single row:

Or read a scalar value without dealing explicitly with the ResultSet:

max_age = db.scalar "select max(age) from contacts"

All available methods to perform statements in a database are defined in
 DB::QueryMethods .

name, age = db.query_one "select name, age from contacts order by age desc limit 1", a

Nil

258

Connection
A connection is one of the key parts when working with databases. It represents
the runway through which statements travel from our application to the database.

In Crystal we have two ways of building this connection. And so, coming up next,
we are going to present examples with some advice on when to use each one.

DB module
Give me a place to stand, and I shall move the earth.
Archimedes

The DB module, is our place to stand when working with databases in Crystal. As
written in the documentation: is a unified interface for database access.

One of the methods implemented in this module is DB#connect . Using this method
is the first way for creating a connection. Let's see how to use it.

DB#connect
When using DB#connect we are indeed opening a connection to the database. The
 uri passed as the parameter is used by the module to determine which driver to
use (for example: mysql:// , postgres:// , sqlite:// , etc.) i.e. we do not need to
specify which database we are using.

The uri for this example is mysql://root:root@localhost/test , and so the module
will use the mysql driver to connect to the MySQL database.

Here is the example:

require "mysql"

cnn = DB.connect("mysql://root:root@localhost/test")
puts typeof(cnn) # => DB::Connection
cnn.close

It's worth mentioning that the method returns a DB::Connection object. Although
more specifically, it returns a MySql::Connection object, it doesn't matter because
all types of connections should be polymorphic. So hereinafter we will work with a
 DB::Connection instance, helping us to abstract from specific issues of each
database engine.

When creating a connection manually (as we are doing here) we are responsible
for managing this resource, and so we must close the connection when we are
done using it. Regarding the latter, this little details can be the cause of huge
bugs! Crystal, being a language for humans, give us a more safe way of manually
creating a connection using blocks, like this:

Nil

259

require "mysql"

DB.connect "mysql://root:root@localhost/test" do |cnn|
 puts typeof(cnn) # => DB::Connection
end # the connection will be closed here

Ok, now we have a connection, let's use it!

require "mysql"

DB.connect "mysql://root:root@localhost/test" do |cnn|
 puts typeof(cnn) # => DB::Connection
 puts "Connection closed: #{cnn.closed?}" # => false

 result = cnn.exec("drop table if exists contacts")
 puts result

 result = cnn.exec("create table contacts (name varchar(30), age int)")
 puts result

 cnn.transaction do |tx|
 cnn2 = tx.connection
 puts "Yep, it is the same connection! #{cnn == cnn2}"

 cnn2.exec("insert into contacts values ('Joe', 42)")
 cnn2.exec("insert into contacts values (?, ?)", "Sarah", 43)
 end

 cnn.query_each "select * from contacts" do |rs|
 puts "name: #{rs.read}, age: #{rs.read}"
 end
end

First, in this example, we are using a transaction (check the transactions section
for more information on this topic) Second, it's important to notice that the
connection given by the transaction is the same connection that we were
working with, before the transaction begin. That is, there is only one connection at
all times in our program. And last, we are using the method #exec and #query .
You may read more about executing queries in the database section.

Now that we have a good idea about creating a connection, let's present the
second way for creating one: DB#open

DB#open

require "mysql"

db = DB.open("mysql://root:root@localhost/test")
puts typeof(db) # DB::Database
db.close

As with a connection, we should close the database once we don't need it
anymore. Or instead, we could use a block and let Crystal close the database for
us!

https://crystal-lang.org/reference/database/transactions.html
https://crystal-lang.org/reference/database/

Nil

260

But, where is the connection? Well, we should be asking for the connections.
When a database is created, a pool of connections is created with connections to
the database prepared and ready to use! (Do you want to read more about pool
of connections? In the connection pool section you may read all about this
interesting topic!)

How do we use a connection from the database object? For this, we could ask the
database for a connection using the method Database#checkout . But, doing this will
require to explicitly return the connection to the pool using Connection#release .
Here is an example:

require "mysql"

DB.open "mysql://root:root@localhost/test" do |db|
 cnn = db.checkout
 puts typeof(cnn)

 puts "Connection closed: #{cnn.closed?}" # => false
 cnn.release
 puts "Connection closed: #{cnn.closed?}" # => false
end

And we want a safe way (i.e. no need for us to release the connection) to request
and use a connection from the database , we could use Database#using_connection :

require "mysql"

DB.open "mysql://root:root@localhost/test" do |db|
 db.using_connection do |cnn|
 puts typeof(cnn)
 # use cnn
 end
end

In the next example we will let the database object to manage the connections by
itself, like this:

require "mysql"

DB.open "mysql://root:root@localhost/test" do |db|
 db.exec("drop table if exists contacts")
 db.exec("create table contacts (name varchar(30), age int)")

 db.transaction do |tx|
 cnn = tx.connection
 cnn.exec("insert into contacts values ('Joe', 42)")
 cnn.exec("insert into contacts values (?, ?)", "Sarah", 43)
 end

 db.query_each "select * from contacts" do |rs|
 puts "name: #{rs.read}, age: #{rs.read}"
 end
end

As we may notice, the database is polymorphic with a connection object with
regard to the #exec / #query / #transaction methods. The database is
responsible for the use of the connections. Great!

https://crystal-lang.org/reference/database/connection_pool.html

Nil

261

When to use one or the other?
Given the examples, it may come to our attention that the number of
connections is relevant. If we are programming a short living application with
only one user starting requests to the database then a single connection
managed by us (i.e. a DB::Connection object) should be enough (think of a
command line application that receives parameters, then starts a request to the
database and finally displays the result to the user) On the other hand, if we are
building a system with many concurrent users and with heavy database access,
then we should use a DB::Database object; which by using a connection pool will
have a number of connections already prepared and ready to use (no
bootstrap/initialization-time penalizations). Or imagine that you are building a
long-living application (like a background job) then a connection pool will free you
from the responsibility of monitoring the state of the connection: is it alive or does
it need to reconnect?

Nil

262

Connection pool
When a connection is established it usually means opening a TCP connection or
Socket. The socket will handle one statement at a time. If a program needs to
perform many queries simultaneously, or if it handles concurrent requests that aim
to use a database, it will need more than one active connection.

Since databases are separate services from the application using them, the
connections might go down, the services might be restarted, and other sort of
things the program might not want to care about.

To address this issues usually a connection pool is a neat solution.

When a database is opened with crystal-db there is already a connection pool
working. DB.open returns a DB::Database object which manages the whole
connection pool and not just a single connection.

DB.open("mysql://root@localhost/test") do |db|
 # db is a DB::Database
end

When executing statements using db.query , db.exec , db.scalar , etc. the
algorithm goes:

1. Find an available connection in the pool.
i. Create one if needed and possible.
ii. If the pool is not allowed to create a new connection, wait a for a

connection to become available.
i. But this wait should be aborted if it takes too long.

2. Checkout that connection from the pool.
3. Execute the SQL command.
4. If there is no DB::ResultSet yielded, return the connection to the pool.

Otherwise, the connection will be returned to the pool when the ResultSet is
closed.

5. Return the statement result.

If a connection can't be created, or if a connection loss occurs while the statement
is performed the above process is repeated.

The retry logic only happens when the statement is sent through the
 DB::Database . If it is sent through a DB::Connection or DB::Transaction no
retry is performed since the code will state that certain connection object
was expected to be used.

Configuration
The behavior of the pool can be configured from a set of parameters that can
appear as query string in the connection URI.

Nil

263

Name Default value

initial_pool_size 1

max_pool_size 0 (unlimited)

max_idle_pool_size 1

checkout_timeout 5.0 (seconds)

retry_attempts 1

retry_delay 1.0 (seconds)

When DB::Database is opened an initial number of initial_pool_size connections
will be created. The pool will never hold more than max_pool_size connections.
When returning/releasing a connection to the pool it will be closed if there are
already max_idle_pool_size idle connections.

If the max_pool_size was reached and a connection is needed, wait up to
 checkout_timeout seconds for an existing connection to become available.

If a connection is lost or can't be established retry at most retry_attempts times
waiting retry_delay seconds between each try.

Sample
The following program will print the current time from MySQL but if the connection
is lost or the whole server is down for a few seconds the program will still run
without raising exceptions.

file: sample.cr
require "mysql"

DB.open "mysql://root@localhost?retry_attempts=8&retry_delay=3" do |db|
 loop do
 pp db.scalar("SELECT NOW()")
 sleep 0.5
 end
end

$ crystal sample.cr
db.scalar("SELECT NOW()") # => 2016-12-16 16:36:57
db.scalar("SELECT NOW()") # => 2016-12-16 16:36:57
db.scalar("SELECT NOW()") # => 2016-12-16 16:36:58
db.scalar("SELECT NOW()") # => 2016-12-16 16:36:58
db.scalar("SELECT NOW()") # => 2016-12-16 16:36:59
db.scalar("SELECT NOW()") # => 2016-12-16 16:36:59
stop mysql server for some seconds
db.scalar("SELECT NOW()") # => 2016-12-16 16:37:06
db.scalar("SELECT NOW()") # => 2016-12-16 16:37:06
db.scalar("SELECT NOW()") # => 2016-12-16 16:37:07

Nil

264

Transactions
When working with databases, it is common to need to group operations in such a
way that if one fails, then we can go back to the latest safe state. This solution is
described in the transaction paradigm, and is implemented by most database
engines as it is necessary to meet ACID properties (Atomicity, Consistency,
Isolation, Durability)

With this in mind, we present the following example:

We have two accounts (each represented by a name and an amount of money).

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100

In one moment a transfer is made from one account to the other. For example,
John transfers $50 to Sarah

We have two accounts (each represented by a name and an amount of money).

deposit db, "Sarah", 50
withdraw db, "John", 50

It is important to have in mind that if one of the operations fails then the final state
would be inconsistent. So we need to execute the two operations (deposit and
withdraw) as one operation. And if an error occurs then we would like to go back
in time as if that one operation was never executed.

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100

db.transaction do |tx|
 cnn = tx.connection

 transfer_amount = 1000
 deposit cnn, "Sarah", transfer_amount
 withdraw cnn, "John", transfer_amount
end

In the above example, we start a transaction simply by calling the method
 Database#transaction (how we get the database object is encapsulated in the
method get_bank_db and is out of the scope of this document). The block is the
body of the transaction. When the block gets executed (without any error) then
an implicit commit is finally executed to persist the changes in the database. If
an exception is raised by one of the operations, then an implicit rollback is
executed, bringing the database to the state before the transaction started.

ACID

Nil

265

Exception handling and rolling back
As we mentioned early, an implicit rollback gets executed when an exception is
raised, and it’s worth mentioning that the exception may be rescued by us.

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100

begin
 db.transaction do |tx|
 cnn = tx.connection

 transfer_amount = 1000
 deposit(cnn, "Sarah", transfer_amount)
 # John does not have enough money in his account!
 withdraw(cnn, "John", transfer_amount)
 end
rescue ex
 puts "Transfer has been rolled back due to: #{ex}"
end

We may also raise an exception in the body of the transaction:

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100

begin
 db.transaction do |tx|
 cnn = tx.connection

 transfer_amount = 50
 deposit(cnn, "Sarah", transfer_amount)
 withdraw(cnn, "John", transfer_amount)
 raise Exception.new "Because ..."
 end
rescue ex
 puts "Transfer has been rolled back due to: #{ex}"
end

As the previous example, the exception cause the transaction to rollback and then
is rescued by us.

There is one exception with a different behaviour. If a DB::Rollback is raised
within the block, the implicit rollback will happen, but the exception will not be
raised outside the block.

Nil

266

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100

begin
 db.transaction do |tx|
 cnn = tx.connection

 transfer_amount = 50
 deposit(cnn, "Sarah", transfer_amount)
 withdraw(cnn, "John", transfer_amount)

 # rollback exception
 raise DB::Rollback.new
 end
rescue ex
 # ex is never a DB::Rollback
end

Explicit commit and rollback
In all the previous examples, the rolling back is implicit, but we can also tell the
transaction to rollback:

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100

begin
 db.transaction do |tx|
 cnn = tx.connection

 transfer_amount = 50
 deposit(cnn, "Sarah", transfer_amount)
 withdraw(cnn, "John", transfer_amount)

 tx.rollback

 puts "Rolling Back the changes!"
 end
rescue ex
 # Notice that no exception is used in this case.
end

And we can also use the commit method:

db = get_bank_db

db.transaction do |tx|
 cnn = tx.connection

 transfer_amount = 50
 deposit(cnn, "Sarah", transfer_amount)
 withdraw(cnn, "John", transfer_amount)

 tx.commit
end

Nil

267

NOTE: After commit or rollback are used, the transaction is no longer usable.
The connection is still open but any statement will be performed outside the
context of the terminated transaction.

Nested transactions
As the name suggests, a nested transaction is a transaction created inside the
scope of another transaction. Here is an example:

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100
create_account db, "Jack", amount: 0

begin
 db.transaction do |outer_tx|
 outer_cnn = outer_tx.connection

 transfer_amount = 50
 deposit(outer_cnn, "Sarah", transfer_amount)
 withdraw(outer_cnn, "John", transfer_amount)

 outer_tx.transaction do |inner_tx|
 inner_cnn = inner_tx.connection

 # John => 50 (pending commit)
 # Sarah => 150 (pending commit)
 # Jack => 0

 another_transfer_amount = 150
 deposit(inner_cnn, "Jack", another_transfer_amount)
 withdraw(inner_cnn, "Sarah", another_transfer_amount)
 end
 end
rescue ex
 puts "Exception raised due to: #{ex}"
end

Some observations from the above example: the inner_tx works with the values
updated although the outer_tx is pending the commit. The connection used by
 outer_tx and inner_tx is the same connection. This is because the inner_tx
inherits the connection from the outer_tx when created.

Rollback nested transactions

As we’ve already seen, a rollback may be fired at any time (by an exception or by
sending the message rollback explicitly)

So let’s present an example with a rollback fired by an exception placed at the
outer-transaction:

Nil

268

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100
create_account db, "Jack", amount: 0

begin
 db.transaction do |outer_tx|
 outer_cnn = outer_tx.connection

 transfer_amount = 50
 deposit(outer_cnn, "Sarah", transfer_amount)
 withdraw(outer_cnn, "John", transfer_amount)

 outer_tx.transaction do |inner_tx|
 inner_cnn = inner_tx.connection

 # John => 50 (pending commit)
 # Sarah => 150 (pending commit)
 # Jack => 0

 another_transfer_amount = 150
 deposit(inner_cnn, "Jack", another_transfer_amount)
 withdraw(inner_cnn, "Sarah", another_transfer_amount)
 end

 raise Exception.new("Rollback all the things!")
 end
rescue ex
 puts "Exception raised due to: #{ex}"
end

The rollback place in the outer_tx block, rolled back all the changes including the
ones in the inner_tx block (the same happens if we use an explicit rollback).

If the rollback is fired by an exception at the inner_tx block all the changes
including the ones in the outer_tx are rollbacked.

Nil

269

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100
create_account db, "Jack", amount: 0

begin
 db.transaction do |outer_tx|
 outer_cnn = outer_tx.connection

 transfer_amount = 50
 deposit(outer_cnn, "Sarah", transfer_amount)
 withdraw(outer_cnn, "John", transfer_amount)

 outer_tx.transaction do |inner_tx|
 inner_cnn = inner_tx.connection

 # John => 50 (pending commit)
 # Sarah => 150 (pending commit)
 # Jack => 0

 another_transfer_amount = 150
 deposit(inner_cnn, "Jack", another_transfer_amount)
 withdraw(inner_cnn, "Sarah", another_transfer_amount)

 raise Exception.new("Rollback all the things!")
 end
 end
rescue ex
 puts "Exception raised due to: #{ex}"
end

There is a way to rollback the changes in the inner-transaction but keep the ones
in the outer-transaction . Use rollback in the inner_tx object. This will rollback
only then inner-transaction. Here is the example:

Nil

270

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100
create_account db, "Jack", amount: 0

begin
 db.transaction do |outer_tx|
 outer_cnn = outer_tx.connection

 transfer_amount = 50
 deposit(outer_cnn, "Sarah", transfer_amount)
 withdraw(outer_cnn, "John", transfer_amount)

 outer_tx.transaction do |inner_tx|
 inner_cnn = inner_tx.connection

 # John => 50 (pending commit)
 # Sarah => 150 (pending commit)
 # Jack => 0

 another_transfer_amount = 150
 deposit(inner_cnn, "Jack", another_transfer_amount)
 withdraw(inner_cnn, "Sarah", another_transfer_amount)

 inner_tx.rollback
 end
 end
rescue ex
 puts "Exception raised due to: #{ex}"
end

The same happens if a DB::Rollback exception is raised in the inner-transaction
block.

Nil

271

db = get_bank_db

create_account db, "John", amount: 100
create_account db, "Sarah", amount: 100
create_account db, "Jack", amount: 0

begin
 db.transaction do |outer_tx|
 outer_cnn = outer_tx.connection

 transfer_amount = 50
 deposit(outer_cnn, "Sarah", transfer_amount)
 withdraw(outer_cnn, "John", transfer_amount)

 outer_tx.transaction do |inner_tx|
 inner_cnn = inner_tx.connection

 # John => 50 (pending commit)
 # Sarah => 150 (pending commit)
 # Jack => 0

 another_transfer_amount = 150
 deposit(inner_cnn, "Jack", another_transfer_amount)
 withdraw(inner_cnn, "Sarah", another_transfer_amount)

 # Rollback exception
 raise DB::Rollback.new
 end
 end
rescue ex
 puts "Exception raised due to: #{ex}"
end

. Theo Haerder and Andreas Reuter. 1983. Principles of transaction-
oriented database recovery. ACM Comput. Surv. 15, 4 (December 1983),
287-317. DOI=http://dx.doi.org/10.1145/289.291 ↩

ACID

http://dx.doi.org/10.1145/289.291

Nil

272

Guides
Read these guides to get the best out of Crystal.

Nil

273

Performance
Follow these tips to get the best out of your programs, both in speed and memory
terms.

Premature optimization
Donald Knuth once said:

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%.

However, if you are writing a program and you realize that writing a semantically
equivalent, faster version involves just minor changes, you shouldn't miss that
opportunity.

And always be sure to profile your program to learn what its bottlenecks are. For
profiling, on macOS you can use Instruments Time Profiler, which comes with
XCode. On Linux, any program that can profile C/C++ programs, like perf or
Callgrind, should work.

Make sure to always profile programs by compiling or running them with the --
release flag, which turns on optimizations.

Avoiding memory allocations
One of the best optimizations you can do in a program is avoiding extra/useless
memory allocation. A memory allocation happens when you create an instance of
a class, which ends up allocating heap memory. Creating an instance of a struct
uses stack memory and doesn't incur a performance penalty. If you don't know
the difference between stack and heap memory, be sure to read this.

Allocating heap memory is slow, and it puts more pressure on the Garbage
Collector (GC) as it will later have to free that memory.

There are several ways to avoid heap memory allocations. The standard library is
designed in a way to help you do that.

Don't create intermediate strings when writing to an
IO

To print a number to the standard output you write:

puts 123

https://developer.apple.com/library/prerelease/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Instrument-TimeProfiler.html
https://perf.wiki.kernel.org/index.php/Main_Page
http://valgrind.org/docs/manual/cl-manual.html
https://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap

Nil

274

In many programming languages what will happen is that to_s , or a similar
method for converting the object to its string representation, will be invoked, and
then that string will be written to the standard output. This works, but it has a flaw:
it creates an intermediate string, in heap memory, only to write it and then discard
it. This, involves a heap memory allocation and gives a bit of work to the GC.

In Crystal, puts will invoke to_s(io) on the object, passing it the IO to which the
string representation should be written.

So, you should never do this:

puts 123.to_s

as it will create an intermediate string. Always append an object directly to an IO.

When writing custom types, always be sure to override to_s(io) , not to_s , and
avoid creating intermediate strings in that method. For example:

class MyClass
 # Good
 def to_s(io)
 # appends "1, 2" to IO without creating intermediate strings
 x = 1
 y = 2
 io << x << ", " << y
 end

 # Bad
 def to_s(io)
 x = 1
 y = 2
 # using a string interpolation creates an intermediate string.
 # this should be avoided
 io << "#{x}, #{y}"
 end
end

This philosophy of appending to an IO instead of returning an intermediate string
results in better performance than handling intermediate strings. You should use
this strategy in your API definitions too.

Let's compare the times:

Nil

275

io_benchmark.cr
require "benchmark"

io = IO::Memory.new

Benchmark.ips do |x|
 x.report("without to_s") do
 io << 123
 io.clear
 end

 x.report("with to_s") do
 io << 123.to_s
 io.clear
 end
end

Output:

$ crystal run --release io_benchmark.cr
without to_s 77.11M (12.97ns) (± 1.05%) fastest
 with to_s 18.15M (55.09ns) (± 7.99%) 4.25× slower

Always remember that it's not just the time that has improved: memory usage is
also decreased.

Use string interpolation instead of concatenation

Sometimes you need to work directly with strings built from combining string
literals with other values. You shouldn't just concatenate these strings with
 String#+(String) but rather use string interpolation which allows to embed
expressions into a string literal: "Hello, #{name}" is better than "Hello, " +
name.to_s .

Interpolated strings are transformed by the compiler to append to a string IO so
that it automatically avoids intermediate strings. The example above translates to:

String.build do |io|
 io << "Hello, " << name
end

Avoid IO allocation for string building

Prefer to use the dedicated String.build optimized for building strings, instead of
creating an intermediate IO::Memory allocation.

Nil

276

require "benchmark"

Benchmark.ips do |bm|
 bm.report("String.build") do
 String.build do |io|
 99.times do
 io << "hello world"
 end
 end
 end

 bm.report("IO::Memory") do
 io = IO::Memory.new
 99.times do
 io << "hello world"
 end
 io.to_s
 end
end

Output:

$ crystal run --release str_benchmark.cr
String.build 597.57k (1.67µs) (± 5.52%) fastest
 IO::Memory 423.82k (2.36µs) (± 3.76%) 1.41× slower

Avoid creating temporary objects over and over

Consider this program:

lines_with_language_reference = 0
while line = gets
 if ["crystal", "ruby", "java"].any? { |string| line.includes?(string) }
 lines_with_language_reference += 1
 end
end
puts "Lines that mention crystal, ruby or java: #{lines_with_language_reference}"

The above program works but has a big performance problem: on every iteration
a new array is created for ["crystal", "ruby", "java"] . Remember: an array literal
is just syntax sugar for creating an instance of an array and adding some values
to it, and this will happen over and over on each iteration.

There are two ways to solve this:

1. Use a tuple. If you use {"crystal", "ruby", "java"} in the above program it
will work the same way, but since a tuple doesn't involve heap memory it will
be faster, consume less memory, and give more chances for the compiler to
optimize the program.

Nil

277

2. Move the array to a constant.

Using tuples is the preferred way.

Explicit array literals in loops is one way to create temporary objects, but these
can also be created via method calls. For example Hash#keys will return a new
array with the keys each time it's invoked. Instead of doing that, you can use
 Hash#each_key , Hash#has_key? and other methods.

Use structs when possible

If you declare your type as a struct instead of a class, creating an instance of it
will use stack memory, which is much cheaper than heap memory and doesn't put
pressure on the GC.

You shouldn't always use a struct, though. Structs are passed by value, so if you
pass one to a method and the method makes changes to it, the caller won't see
those changes, so they can be bug-prone. The best thing to do is to only use
structs with immutable objects, especially if they are small.

For example:

lines_with_language_reference = 0
while line = gets
 if {"crystal", "ruby", "java"}.any? { |string| line.includes?(string) }
 lines_with_language_reference += 1
 end
end
puts "Lines that mention crystal, ruby or java: #{lines_with_language_reference}"

LANGS = ["crystal", "ruby", "java"]

lines_with_language_reference = 0
while line = gets
 if LANGS.any? { |string| line.includes?(string) }
 lines_with_language_reference += 1
 end
end
puts "Lines that mention crystal, ruby or java: #{lines_with_language_reference}"

Nil

278

class_vs_struct.cr
require "benchmark"

class PointClass
 getter x
 getter y

 def initialize(@x : Int32, @y : Int32)
 end
end

struct PointStruct
 getter x
 getter y

 def initialize(@x : Int32, @y : Int32)
 end
end

Benchmark.ips do |x|
 x.report("class") { PointClass.new(1, 2) }
 x.report("struct") { PointStruct.new(1, 2) }
end

Output:

$ crystal run --release class_vs_struct.cr
 class 28.17M (± 2.86%) 15.29× slower
struct 430.82M (± 6.58%) fastest

Iterating strings
Strings in Crystal always contain UTF-8 encoded bytes. UTF-8 is a variable-
length encoding: a character may be represented by several bytes, although
characters in the ASCII range are always represented by a single byte. Because
of this, indexing a string with String#[] is not an O(1) operation, as the bytes
need to be decoded each time to find the character at the given position. There's
an optimization that Crystal's String does here: if it knows all the characters in
the string are ASCII, then String#[] can be implemented in O(1) . However, this
isn't generally true.

For this reason, iterating a String in this way is not optimal, and in fact has a
complexity of O(n^2) :

string = "foo"
while i < string.size
 char = string[i]
 # ...
end

There's a second problem with the above: computing the size of a String is also
slow, because it's not simply the number of bytes in the string (the bytesize).
However, once a String's size has been computed, it is cached.

Nil

279

The way to improve performance in this case is to either use one of the iteration
methods (each_char , each_byte , each_codepoint), or use the more low-level
 Char::Reader struct. For example, using each_char :

string = "foo"
string.each_char do |char|
 # ...
end

Nil

280

Concurrency

Concurrency vs. Parallelism
The definitions of "concurrency" and "parallelism" sometimes get mixed up, but
they are not the same.

A concurrent system is one that can be in charge of many tasks, although not
necessarily it is executing them at the same time. You can think of yourself being
in the kitchen cooking: you chop an onion, put it to fry, and while it's being fried
you chop a tomato, but you are not doing all of those things at the same time: you
distribute your time between those tasks. Parallelism would be to stir fry onions
with one hand while with the other one you chop a tomato.

At the moment of this writing, Crystal has concurrency support but not parallelism:
several tasks can be executed, and a bit of time will be spent on each of these,
but two code paths are never executed at the same exact time.

A Crystal program executes in a single operating system thread, except the
Garbage Collector (GC) which implements a concurrent mark-and-sweep
(currently Boehm GC).

Fibers

To achieve concurrency, Crystal has fibers. A fiber is in a way similar to an
operating system thread except that it's much more lightweight and its execution
is managed internally by the process. So, a program will spawn multiple fibers
and Crystal will make sure to execute them when the time is right.

Event loop

For everything I/O related there's an event loop. Some time-consuming
operations are delegated to it, and while the event loop waits for that operation to
finish the program can continue executing other fibers. A simple example of this is
waiting for data to come through a socket.

Channels

Crystal has Channels inspired by CSP. They allow communicating data between
fibers without sharing memory and without having to worry about locks,
semaphores or other special structures.

Execution of a program
When a program starts, it fires up a main fiber that will execute your top-level
code. There, one can spawn many other fibers. The components of a program
are:

http://www.hboehm.info/gc/
https://en.wikipedia.org/wiki/Communicating_sequential_processes

Nil

281

The Runtime Scheduler, in charge of executing all fibers when the time is
right.
The Event Loop, which is just another fiber, being in charge of async tasks,
like for example files, sockets, pipes, signals and timers (like doing a sleep).
Channels, to communicate data between fibers. The Runtime Scheduler will
coordinate fibers and channels for their communication.
Garbage Collector: to clean up "no longer used" memory.

A Fiber

A fiber is an execution unit that is more lightweight than a thread. It's a small
object that has an associated stack of 8MB, which is what is usually assigned to
an operating system thread.

Fibers, unlike threads, are cooperative. Threads are pre-emptive: the operating
system might interrupt a thread at any time and start executing another one. A
fiber must explicitly tell the Runtime Scheduler to switch to another fiber. For
example if there's I/O to be waited on, a fiber will tell the scheduler "Look, I have
to wait for this I/O to be available, you continue executing other fibers and come
back to me when that I/O is ready".

The advantage of being cooperative is that a lot of the overhead of doing a
context switch (switching between threads) is gone.

A Fiber is much more lightweight than a thread: even though it's assigned 8MB, it
starts with a small stack of 4KB.

On a 64-bit machine it lets us spawn millions and millions of fibers. In a 32-bit
machine we can only spawn 512 fibers, which is not a lot. But because 32-bit
machines are starting to become obsolete, we'll bet on the future and focus more
on 64-bit machines.

The Runtime Scheduler

The scheduler has a queue of:

Fibers ready to be executed: for example when you spawn a fiber, it's ready
to be executed.
The event loop: which is another fiber. When there are no other fibers ready
to be executed, the event loop checks if there is any async operation that is
ready, and then executes the fiber waiting for that operation. The event loop
is currently implemented with libevent , which is an abstraction of other
event mechanisms like epoll and kqueue .
Fibers that voluntarily asked to wait: this is done with Fiber.yield , which
means "I can continue executing, but I'll give you some time to execute other
fibers if you want".

Communicating data

https://en.wikipedia.org/wiki/Call_stack

Nil

282

Because at this moment there's only a single thread executing your code,
accessing and modifying a class variable in different fibers will work just fine.
However, once multiple threads (parallelism) is introduced in the language, it
might break. That's why the recommended mechanism to communicate data is
using channels and sending messages between them. Internally, a channel
implements all the locking mechanisms to avoid data races, but from the outside
you use them as communication primitives, so you (the user) don't have to use
locks.

Sample code

Spawning a fiber

To spawn a fiber you use spawn with a block:

spawn do
 # ...
 socket.gets
 # ...
end

spawn do
 # ...
 sleep 5.seconds
 # ...
end

Here we have two fibers: one reads from a socket and the other does a sleep .
When the first fiber reaches the socket.gets line, it gets suspended, the Event
Loop is told to continue executing this fiber when there's data in the socket, and
the program continues with the second fiber. This fiber wants to sleep for 5
seconds, so the Event Loop is told to continue with this fiber in 5 seconds. If there
aren't other fibers to execute, the Event Loop will wait until either of these events
happen, without consuming CPU time.

The reason why socket.gets and sleep behave like this is because their
implementations talk directly with the Runtime Scheduler and the Event Loop,
there's nothing magical about it. In general, the standard library already takes
care of doing all of this so you don't have to.

Note, however, that fibers don't get executed right away. For example:

spawn do
 loop do
 puts "Hello!"
 end
end

Running the above code will produce no output and exit immediately.

The reason for this is that a fiber is not executed as soon as it is spawned. So, the
main fiber, the one that spawns the above fiber, finishes its execution and the
program exits.

Nil

283

One way to solve it is to do a sleep :

spawn do
 loop do
 puts "Hello!"
 end
end

sleep 1.second

This program will now print "Hello!" for one second and then exit. This is because
the sleep call will schedule the main fiber to be executed in a second, and then
executes another "ready to execute" fiber, which in this case is the one above.

Another way is this:

spawn do
 loop do
 puts "Hello!"
 end
end

Fiber.yield

This time Fiber.yield will tell the scheduler to execute the other fiber. This will
print "Hello!" until the standard output blocks (the system call will tell us we have
to wait until the output is ready), and then execution continues with the main fiber
and the program exits. Here the standard output might never block so the
program will continue executing forever.

If we want to execute the spawned fiber for ever, we can use sleep without
arguments:

spawn do
 loop do
 puts "Hello!"
 end
end

sleep

Of course the above program can be written without spawn at all, just with a loop.
 sleep is more useful when spawning more than one fiber.

Spawning a call

You can also spawn by passing a method call instead of a block. To understand
why this is useful, let's look at this example:

Nil

284

i = 0
while i < 10
 spawn do
 puts(i)
 end
 i += 1
end

Fiber.yield

The above program prints "10" ten times. The problem is that there's only one
variable i that all spawned fibers refer to, and when Fiber.yield is executed its
value is 10.

To solve this, we can do this:

i = 0
while i < 10
 proc = ->(x : Int32) do
 spawn do
 puts(x)
 end
 end
 proc.call(i)
 i += 1
end

Fiber.yield

Now it works because we are creating a Proc and we invoke it passing i , so the
value gets copied and now the spawned fiber receives a copy.

To avoid all this boilerplate, the standard library provides a spawn macro that
accepts a call expression and basically rewrites it to do the above. Using it, we
end up with:

i = 0
while i < 10
 spawn puts(i)
 i += 1
end

Fiber.yield

This is mostly useful with local variables that change at iterations. This doesn't
happen with block arguments. For example, this works as expected:

10.times do |i|
 spawn do
 puts i
 end
end

Fiber.yield

Spawning a fiber and waiting for it to complete

http://crystal-lang.org/api/Proc.html

Nil

285

We can use a channel for this:

channel = Channel(Nil).new

spawn do
 puts "Before send"
 channel.send(nil)
 puts "After send"
end

puts "Before receive"
channel.receive
puts "After receive"

This prints:

Before receive
Before send
After receive

First, the program spawns a fiber but doesn't execute it yet. When we invoke
 channel.receive , the main fiber blocks and execution continues with the spawned
fiber. Then channel.send(nil) is invoked, and so execution continues at
 channel.receive , which was waiting for a value. Then the main fiber continues
executing and finishes, so the program exits without giving the other fiber a
chance to print "After send".

In the above example we used nil just to communicate that the fiber ended. We
can also use channels to communicate values between fibers:

channel = Channel(Int32).new

spawn do
 puts "Before first send"
 channel.send(1)
 puts "Before second send"
 channel.send(2)
end

puts "Before first receive"
value = channel.receive
puts value # => 1

puts "Before second receive"
value = channel.receive
puts value # => 2

Output:

Before first receive
Before first send
1
Before second receive
Before second send
2

Nil

286

Note that when the program executes a receive , that fiber blocks and execution
continues with the other fiber. When send is executed, execution continues with
the fiber that was waiting on that channel.

Here we are sending literal values, but the spawned fiber might compute this
value by, for example, reading a file, or getting it from a socket. When this fiber
will have to wait for I/O, other fibers will be able to continue executing code until
I/O is ready, and finally when the value is ready and sent through the channel, the
main fiber will receive it. For example:

require "socket"

channel = Channel(String).new

spawn do
 server = TCPServer.new("0.0.0.0", 8080)
 socket = server.accept
 while line = socket.gets
 channel.send(line)
 end
end

spawn do
 while line = gets
 channel.send(line)
 end
end

3.times do
 puts channel.receive
end

The above program spawns two fibers. The first one creates a TCPServer,
accepts one connection and reads lines from it, sending them to the channel.
There's a second fiber reading lines from standard input. The main fiber reads the
first 3 messages sent to the channel, either from the socket or stdin, then the
program exits. The gets calls will block the fibers and tell the Event Loop to
continue from there if data comes.

Likewise, we can wait for multiple fibers to complete execution, and gather their
values:

channel = Channel(Int32).new

10.times do |i|
 spawn do
 channel.send(i * 2)
 end
end

sum = 0
10.times do
 sum += channel.receive
end
puts sum # => 90

You can, of course, use receive inside a spawned fiber:

Nil

287

channel = Channel(Int32).new

spawn do
 puts "Before send"
 channel.send(1)
 puts "After send"
end

spawn do
 puts "Before receive"
 puts channel.receive
 puts "After receive"
end

puts "Before yield"
Fiber.yield
puts "After yield"

Output:

Before yield
Before send
Before receive
1
After receive
After send
After yield

Here channel.send is executed first, but since there's no one waiting for a value
(yet), execution continues in other fibers. The second fiber is executed, there's a
value on the channel, it's obtained, and execution continues, first with the first
fiber, then with the main fiber, because Fiber.yield puts a fiber at the end of the
execution queue.

Buffered channels

The above examples use unbuffered channels: when sending a value, if a fiber is
waiting on that channel then execution continues on that fiber.

With a buffered channel, invoking send won't switch to another fiber unless the
buffer is full:

A buffered channel of capacity 2
channel = Channel(Int32).new(2)

spawn do
 puts "Before send 1"
 channel.send(1)
 puts "Before send 2"
 channel.send(2)
 puts "Before send 3"
 channel.send(3)
 puts "After send"
end

3.times do |i|
 puts channel.receive
end

Nil

288

Output:

Before send 1
Before send 2
Before send 3
1
2
After send
3

Note that the first 2 sends are executed without switching to another fiber.
However, in the third send the channel's buffer is full, so execution goes to the
main fiber. Here the two values are received and the channel is depleted. At the
third receive the main fiber blocks and execution goes to the other fiber, which
sends more values, finishes, etc.

Nil

289

Testing Crystal Code
Crystal comes with a fully-featured spec library in the Spec module. It provides a
structure for writing executable examples of how your code should behave.

Inspired by Rspec, it includes a domain specific language (DSL) that allows you to
write examples in a way similar to plain english.

A basic spec looks something like this:

require "spec"

describe Array do
 describe "#size" do
 it "correctly reports the number of elements in the Array" do
 [1, 2, 3].size.should eq 3
 end
 end

 describe "#empty?" do
 it "is true when no elements are in the array" do
 ([] of Int32).empty?.should be_true
 end

 it "is false if there are elements in the array" do
 [1].empty?.should be_false
 end
 end
end

Anatomy of a spec file
To use the spec module and DSL, you need to add require "spec" to your spec
files. Many projects use a custom spec helper which organizes these includes.

Concrete test cases are defined in it blocks. An optional (but strongly
recommended) descriptive string states it's purpose and a block contains the
main logic performing the test.

Test cases that have been defined or outlined but are not yet expected to work
can be defined using pending instead of it . They will not be run but show up in
the spec report as pending.

An it block contains an example that should invoke the code to be tested and
define what is expected of it. Each example can contain multiple expectations, but
it should test only one specific behaviour.

When spec is included, every object has the instance methods #should and
 #should_not . These methods are invoked on the value being tested with an
expectation as argument. If the expectation is met, code execution continues.
Otherwise the example has failed and other code in this block will not be
executed.

https://crystal-lang.org/api/latest/Spec.html
http://rspec.info/

Nil

290

In test files, specs are structured by example groups which are defined by
 describe and context sections. Typically a top level describe defines the outer
unit (such as a class) to be tested by the spec. Further describe sections can be
nested within the outer unit to specify smaller units under test (such as individual
methods).

For unit tests, it is recommended to follow the conventions for method names:
Outer describe is the name of the class, inner describe targets methods.
Instance methods are prefixed with # , class methods with . .

To establish certain contexts - think empty array versus array with elements - the
 context method may be used to communicate this to the reader. It has a different
name, but behaves exactly like describe .

 describe and context take a description as argument (which should usually be a
string) and a block containing the individual specs or nested groupings.

Expectations
Expectations define if the value being tested (actual) matches a certain value or
specific criteria.

Equivalence, Identity and Type

There are methods to create expectations which test for equivalence (eq),
identity (be), type (be_a), and nil (be_nil). Note that the identity expectation
uses .same? which tests if #object_id are identical. This is only true if the
expected value points to the same object instead of an equivalent one. This is
only possible for reference types and won't work for value types like structs or
numbers.

actual.should eq(expected) # passes if actual == expected
actual.should be(expected) # passes if actual.same?(expected)
actual.should be_a(expected) # passes if actual.is_a?(expected)
actual.should be_nil # passes if actual.nil?

Truthiness

Comparisons

actual.should be < expected # passes if actual < expected
actual.should be <= expected # passes if actual <= expected
actual.should be > expected # passes if actual > expected
actual.should be >= expected # passes if actual >= expected

actual.should be_true # passes if actual == true
actual.should be_false # passes if actual == false
actual.should be_truthy # passes if actual is truthy (neither nil nor false nor Pointe
actual.should be_falsey # passes if actual is falsey (nil, false or Pointer.null)

https://crystal-lang.org/api/latest/Reference.html#object_id%3AUInt64-instance-method

Nil

291

Other matchers

Expecting errors

These matchers run a block and pass if it raises a certain exception.

expect_raises(MyError) do
 # Passes if this block raises an exception of type MyError.
end

expect_raises(MyError, "error message") do
 # Passes if this block raises an exception of type MyError
 # and the error message contains "error message".
end

expect_raises(MyError, /error \w{7}/) do
 # Passes if this block raises an exception of type MyError
 # and the error message matches the regular expression.
end

They return the rescued exception so it can be used for further expectations, for
example to verify specific properties of the exception.

Focusing on a group of specs
 describe , context and it blocks can be marked with focus: true , like this:

it "adds", focus: true do
 (2 + 2).should_not eq(5)
end

If any such thing is marked with focus: true then only those examples will run.

Tagging specs
Tags can be used to group specs, allowing to only run a subset of specs when
providing a --tag argument to the spec runner (see Using the compiler).

 describe , context and it blocks can be tagged, like this:

actual.should be_close(expected, delta) # passes if actual is within delta of expected
 # (actual - expected).abs <= delta
actual.should contain(expected) # passes if actual.includes?(expected)
actual.should match(expected) # passes if actual =~ expected

Nil

292

it "is slow", tags: "slow" do
 sleep 60
 true.should be(true)
end

it "is fast", tags: "fast" do
 true.should be(true)
end

Tagging an example group (describe or context) extends to all of the contained
examples.

Multiple tags can be specified by giving an Enumerable , such as Array or Set .

Running specs
The Crystal compiler has a spec command with tools to constrain which
examples get run and tailor the output. All specs of a project are compiled and
executed through the command crystal spec .

By convention, specs live in the spec/ directory of a project. Spec files must end
with _spec.cr to be recognizable as such by the compiler command.

You can compile and run specs from folder trees, individual files, or specific lines
in a file. If the specified line is the beginning of a describe or context section, all
specs inside that group are run.

The default formatter outputs the file and line style command for failing specs
which makes it easy to rerun just this individual spec.

You can turn off colors with the switch --no-color .

Randomizing order of specs

Specs, by default, run in the order defined, but can be run in a random order by
passing --order random to crystal spec .

Specs run in random order will display a seed value upon completion. This seed
value can be used to rerun the specs in that same order by passing the seed
value to --order .

Examples

https://crystal-lang.org/api/Enumerable.html
https://crystal-lang.org/api/Array.html
https://crystal-lang.org/api/Set.html

Nil

293

Run all specs in files matching spec/**/*_spec.cr
crystal spec

Run all specs in files matching spec/**/*_spec.cr without colors
crystal spec --no-color

Run all specs in files matching spec/my/test/**/*_spec.cr
crystal spec spec/my/test/

Run all specs in spec/my/test/file_spec.cr
crystal spec spec/my/test/file_spec.cr

Run the spec or group defined in line 14 of spec/my/test/file_spec.cr
crystal spec spec/my/test/file_spec.cr:14

Run all specs tagged with "fast"
crystal spec --tag 'fast'

Run all specs not tagged with "slow"
crystal spec --tag '~slow'

Spec helper
Many projects use a custom spec helper file, usually named spec/spec_helper.cr .

This file is used to require spec and other includes like code from the project
needed for every spec file. This is also a good place to define global helper
methods that make writing specs easier and avoid code duplication.

spec/spec_helper.cr
require "spec"
require "../src/my_project.cr"

def create_test_object(name)
 project = MyProject.new(option: false)
 object = project.create_object(name)
 object
end

spec/my_project_spec.cr
require "./spec_helper"

describe "MyProject::Object" do
 it "is created" do
 object = create_test_object(name)
 object.should_not be_nil
 end
end

Nil

294

Writing Shards
How to write and release Crystal Shards.

What's a Shard?
Simply put, a Shard is a package of Crystal code, made to be shared-with and
used-by other projects.

See the Shards command for details.

Introduction
In this tutorial, we'll be making a Crystal library called palindrome-example.

For those who don't know, a palindrome is a word which is spelled the
same way forwards as it is backwards. e.g. racecar, mom, dad, kayak,
madam

Requirements

In order to release a Crystal Shard, and follow along with this tutorial, you will
need the following:

A working installation of the Crystal compiler
A working installation of Git
A GitHub or GitLab account

Creating the Project

Begin by using the Crystal compiler's init lib command to create a Crystal
library with the standard directory structure.

In your terminal: crystal init lib <YOUR-SHARD-NAME>

e.g.

$ crystal init lib palindrome-example
 create palindrome-example/.gitignore
 create palindrome-example/.editorconfig
 create palindrome-example/LICENSE
 create palindrome-example/README.md
 create palindrome-example/.travis.yml
 create palindrome-example/shard.yml
 create palindrome-example/src/palindrome-example.cr
 create palindrome-example/src/palindrome-example/version.cr
 create palindrome-example/spec/spec_helper.cr
 create palindrome-example/spec/palindrome-example_spec.cr
Initialized empty Git repository in /<YOUR-DIRECTORY>/.../palindrome-example/.git/

...and cd into the directory:

https://git-scm.com/
https://github.com/
https://gitlab.com/

Nil

295

e.g.

cd palindrome-example

Then add & commit to start tracking the files with Git:

$ git add -A
$ git commit -am "First Commit"
[master (root-commit) 77bad84] First Commit
10 files changed, 102 insertions(+)
create mode 100644 .editorconfig
create mode 100644 .gitignore
create mode 100644 .travis.yml
create mode 100644 LICENSE
create mode 100644 README.md
create mode 100644 shard.yml
create mode 100644 spec/palindrome-example_spec.cr
create mode 100644 spec/spec_helper.cr
create mode 100644 src/palindrome-example.cr
create mode 100644 src/palindrome-example/version.cr

Writing the Code

The code you write is up to you, but how you write it impacts whether people want
to use your library and/or help you maintain it.

Testing the Code

Test your code. All of it. It's the only way for anyone, including you, to know if
it works.
Crystal has a built-in testing library. Use it!

Documentation

Document your code with comments. All of it. Even the private methods.
Crystal has a built-in documentation generator. Use it!

Run crystal docs to convert your code and comments into interlinking API
documentation. Open the files in the /docs/ directory with a web browser to see
how your documentation is looking along the way.

See below for instructions on hosting your compiler-generated docs on
GitHub/GitLab Pages.

Once your documentation is ready and available, you can add a documentation
badge to your repository so users know that it exists. In GitLab this badge belongs
to the project so we'll cover it in the GitLab instructions below, for GitHub it is
common to place it below the description in your README.md like so: (Be sure to
replace <LINK-TO-YOUR-DOCUMENTATION> accordingly)

[![Docs](https://img.shields.io/badge/docs-available-brightgreen.svg)](<LINK-TO-YOUR-D

https://crystal-lang.org/api/Spec.html

Nil

296

Writing a README

A good README can make or break your project. Awesome README is a nice
curation of examples and resources on the topic.

Most importantly, your README should explain:

1. What your library is
2. What it does
3. How to use it

This explanation should include a few examples along with subheadings.

NOTE: Be sure to replace all instances of [your-github-name] in the Crystal-
generated README template with your GitHub/GitLab username. If you're using
GitLab, you'll also want to change all instances of github with gitlab .

Coding Style

It's fine to have your own style, but sticking to some core rubrics defined by
the Crystal team can help keep your code consistent, readable and usable for
other developers.
Utilize Crystal's built-in code formatter to automatically format all .cr files in
a directory.

e.g.

crystal tool format

To check if your code is formatted correctly, or to check if using the formatter
wouldn't produce any changes, simply add --check to the end of this command.

e.g.

crystal tool format --check

See the Travis CI section below to implement this in your build.

Writing a shard.yml

The spec is your rulebook. Follow it.

Name

Your shard.yml 's name property should be concise and descriptive.

Search crystalshards.xyz to check if your name is already taken.

e.g.

name: palindrome-example

https://github.com/matiassingers/awesome-readme
https://github.com/crystal-lang/shards/blob/master/SPEC.md
https://crystalshards.xyz/

Nil

297

Description

Add a description to your shard.yml .

A description is a single line description used to search for and find your shard.

A description should be:

1. Informative
2. Discoverable

Optimizing

It's hard for anyone to use your project if they can't find it. crystalshards.xyz is
currently the go-to place for Crystal libraries, so that's what we'll optimize for.

There are people looking for the exact functionality of our library and the general
functionality of our library. e.g. Bob needs a palindrome library, but Felipe is just
looking for libraries involving text and Susan is looking for libraries involving
spelling.

Our name is already descriptive enough for Bob's search of "palindrome". We
don't need to repeat the palindrome keyword. Instead, we'll catch Susan's search
for "spelling" and Felipe's search for "text".

Hosting

From here the guide differs depending on whether you are hosting your repo on
GitHub or GitLab. If you're hosting somewhere else, please feel free to write up a
guide and add it to this book!

Hosting on GitHub
Hosting on GitLab

description: |
 A textual algorithm to tell if a word is spelled the same way forwards as it is back

https://crystalshards.xyz/

Nil

298

Hosting on GitHub
Create a repository with the same name and description as specified in your
 shard.yml .

Add and commit everything:

$ git add -A && git commit -am "shard complete"

Add the remote: (Be sure to replace <YOUR-GITHUB-USERNAME> and <YOUR-
REPOSITORY-NAME> accordingly)

NOTE: If you like, feel free to replace public with origin , or a remote name of
your choosing.

Push it:

$ git push public master

GitHub Releases

It's good practice to do GitHub Releases.

Add the following markdown build badge below the description in your README
to inform users what the most current release is: (Be sure to replace <YOUR-GITHUB-
USERNAME> and <YOUR-REPOSITORY-NAME> accordingly)

Start by navigating to your repository's releases page.

This can be found at https://github.com/<YOUR-GITHUB-NAME>/<YOUR-REPOSITORY-
NAME>/releases

Click "Create a new release".

According to the Crystal Shards README,

When libraries are installed from Git repositories, the repository is expected
to have version tags following a semver-like format, prefixed with a v .
Examples: v1.2.3, v2.0.0-rc1 or v2017.04.1

Accordingly, in the input that says tag version , type v0.1.0 . Make sure this
matches the version in shard.yml . Title it v0.1.0 and write a short description for
the release.

Click "Publish release" and you're done!

$ git remote add public https://github.com/<YOUR-GITHUB-NAME>/<YOUR-REPOSITORY-NAME>.g

[![GitHub release](https://img.shields.io/github/release/<YOUR-GITHUB-USERNAME>/<YOUR-

https://github.com/crystal-lang/shards/blob/master/README.md

Nil

299

You'll now notice that the GitHub Release badge has updated in your README.

Follow Semantic Versioning and create a new release every time your push new
code to master .

Travis CI and .travis.yml

If you haven't already, sign up for Travis CI.

Insert the following markdown build badge below the description in your
README.md: (be sure to replace <YOUR-GITHUB-USERNAME> and <YOUR-REPOSITORY-
NAME> accordingly)

Build badges are a simple way to tell people whether your Travis CI build passes.

Add the following lines to your .travis.yml :

script:
 - crystal spec

This tells Travis CI to run your tests. Accordingly with the outcome of this
command, Travis CI will return a build status of "passed", "errored", "failed" or
"canceled".

If you want to verify that all your code has been formatted with crystal tool
format , add a script for crystal tool format --check . If the code is not formatted
correctly, this will break the build just as failing tests would.

e.g.

script:
 - crystal spec
 - crystal tool format --check

Commit and push to GitHub.

Follow these guidelines to get your repo up & running on Travis CI.

Once you're up and running, and the build is passing, the build badge will update
in your README.

Hosting your docs on GitHub-Pages

Add the following script to your .travis.yml :

 - crystal docs

This tells Travis CI to generate your documentation.

[![Build Status](https://travis-ci.org/<YOUR-GITHUB-USERNAME>/<YOUR-REPOSITORY-NAME>.s

http://semver.org/
https://travis-ci.org/
https://docs.travis-ci.com/user/for-beginners/#breaking-the-build
https://docs.travis-ci.com/user/for-beginners/#breaking-the-build
https://docs.travis-ci.com/user/getting-started/

Nil

300

Next, add the following lines to your .travis.yml . (Be sure to replace all instances
of <YOUR-GITHUB-REPOSITORY-NAME> accordingly)

deploy:
 provider: pages
 skip_cleanup: true
 github_token: $GITHUB_TOKEN
 project_name: <YOUR-GITHUB-REPOSITORY-NAME>
 on:
 branch: master
 local_dir: docs

Set the Environment Variable, GITHUB_TOKEN , with your personal access token.

If you've been following along, your .travis.yml file should look something like
this:

language: crystal
script:
 - crystal spec
 - crystal docs
deploy:
 provider: pages
 skip_cleanup: true
 github_token: $GITHUB_TOKEN
 project_name: <YOUR-GITHUB-REPOSITORY-NAME>
 on:
 branch: master
 local_dir: docs

Click Here for the official documentation on deploying to GitHub-Pages with Travis
CI.

https://docs.travis-ci.com/user/environment-variables#defining-variables-in-repository-settings
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://docs.travis-ci.com/user/deployment/pages/

Nil

301

Hosting on GitLab
Go ahead and delete the default travis.yml that comes with the project. We
won't be needing it.

Add and commit everything:

 $ git add -A && git commit -am "shard complete"

Create a GitLab project with the same name and description as specified in
your shard.yml .

Add the remote: (Be sure to replace <YOUR-GITLAB-USERNAME> and <YOUR-
REPOSITORY-NAME> accordingly)

or if you use SSH

Push it:

 $ git push origin master

Pipelines

Next, let's setup a GitLab Pipeline that can run our tests and build/deploy the docs
when we push code to the repo.

Simply, you can just add the following file to the root of the repo and name it
 .gitlab-ci.yml

 $ git remote add origin https://gitlab.com/<YOUR-GITLAB-USERNAME>/<YOUR-REPOSIT

 $ git remote add origin git@gitlab.com:<YOUR-GITLAB-USERNAME>/<YOUR-REPOSITORY-

https://docs.gitlab.com/ee/ci/pipelines.html

Nil

302

image: "crystallang/crystal:latest"

before_script:
 - shards install

cache:
 paths:
 - lib/

spec & format:
 script:
 - crystal spec
 - crystal tool format --check

pages:
 stage: deploy
 script:
 - crystal docs -o public src/palindrome-example.cr
 artifacts:
 paths:
 - public
 only:
 - master

This creates two jobs. The first one is titled "spec & format" (you can use any
name you like) and by default goes in the "test" stage of the pipeline. It just runs
the array of commands in script on a brand new instance of the docker
container specified by image . You'll probably want to lock that container to the
version of crystal you're using (the one specified in your shard.yml) but for this
example we'll just use the latest tag.

The test stage of the pipeline will either pass (each element of the array returned
a healthy exit code) or it will fail (one of the elements returned an error).

If it passes, then the pipeline will move onto the second job we defined here which
we must name "pages". This is a special job just for deploying content to your
gitlab pages site! This one is executed after tests have passed because we
specified that it should occur in the "deploy" stage. It again runs the commands in
 script (this time building the docs), but this time we tell it to preserve the path
 public (where we stashed the docs) as an artifact of the job.

The result of naming this job pages and putting our docs in the public directory
and specifying it as an artifact is that GitLab will deploy the site in that directory
to the default URL https://<YOUR-GITLAB-USERNAME>.gitlab.io/<YOUR-REPOSITORY-NAME> .

The before_script and cache keys in the file are for running the same script in
every job (shards install) and for hanging onto the files that were created
(cache). They're not necessary if your shard doesn't have any dependencies.

If you commit the above file to your project and push, you'll trigger your first run of
the new pipeline.

$ git add -A && git commit -am 'Add .gitlab-ci.yml' && git push origin master

Some Badges

https://docs.gitlab.com/ee/ci/yaml/#pages

Nil

303

While that pipeline is running, let's attach some badges to the project to show off
our docs and the (hopefully) successful state of our pipeline. (You might want to
read the badges docs.)

A badge is just a link with an image. So let's create a link to our pipeline and fetch
a badge image from the Gitlab Pipeline Badges API.

In the Badges section of the General settings, we'll first add a release badge. The
link is: https://gitlab.com/<YOUR-GITLAB-USERNAME>/<YOUR-REPOSITORY-NAME>/pipelines
and the Badge Image URL is: https://gitlab.com/<YOUR-GITLAB-USERNAME>/<YOUR-
REPOSITORY-NAME>/badges/master/pipeline.svg .

And now if the pipleline has finished we'll have docs and we can link to them with
a generic badge from shields.io .

Link: https://<YOUR-GITLAB-USERNAME>.gitlab.io/<YOUR-REPOSITORY-NAME>
Image: https://img.shields.io/badge/docs-available-brightgreen.svg

Releases
A release is just a special commit in your history with a name (see tagging).

According to the Crystal Shards README,

When libraries are installed from Git repositories, the repository is expected
to have version tags following a semver-like format, prefixed with a v .
Examples: v1.2.3, v2.0.0-rc1 or v2017.04.1

GitLab also has a releases feature that let's you associate files and a description
with this tag. That way you can (for example) distribute binaries.

As you'll see from the releases docs, you can either create an annotated tag
along with release notes/files in the UI:

or you can create the tag from the command line like so:

 $ git tag -a v0.1.0 -m "Release v0.1.0"

push it up

https://gitlab.com/help/user/project/badges
https://docs.gitlab.com/ee/user/project/pipelines/settings.html#pipeline-badges
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://github.com/crystal-lang/shards/blob/master/README.md
https://docs.gitlab.com/ee/workflow/releases.html
https://docs.gitlab.com/ee/workflow/releases.html

Nil

304

 $ git push origin master --follow-tags

and then use the UI to add/edit the release note and attach files.

Best Practices

Use the -a option to create an annotated tag for releases.
Follow Semantic Versioning.

Release Badge

If you'd like you can also add a shields.io badge for the release. GitLab doesn't
have full support for this kind of thing, and until someone adds a version badge for
gitlab to shields.io, we'll have to just code in the version number in the URLs
directly.

Link: https://img.shields.io/badge/release-<VERSION>-brightgreen.svg
Image: https://img.shields.io/badge/release-<VERSION>-brightgreen.svg

where <VERSION> is the version number prefixed with a v like this: v0.1.0 .

Mirror to GitHub

At the moment, crystalshards.xyz only uses the GitHub API, so if you want your
library to be indexed on that service you can set up a "push mirror" from GitLab to
GitHub.

1. Create a GitHub repository with the same name as your project.
2. Follow the instructions here:

https://docs.gitlab.com/ee/workflow/repository_mirroring.html#setting-up-a-
push-mirror-from-gitlab-to-github-core

3. Edit your GitHub description. The first few words of this description will show
up in the search results of crystalshards.xyz but not the whole string, so for
example, you could use the following

Description: Words that are the same forwards and backwards. This is a
mirror of:
Link: https://gitlab.com///

This is a push mirror and that means changes will only propagate one way. So be
sure to let potential collaborators know that pull requests and issues should be
submitted to your GitLab project.

http://semver.org/
https://github.com/badges/shields/blob/master/doc/TUTORIAL.md
https://docs.gitlab.com/ee/workflow/repository_mirroring.html#setting-up-a-push-mirror-from-gitlab-to-github-core
https://gitlab.com/

Nil

305

Continuous Integration
The ability of having immediate feedback on what we are working should be one
of the most important characteristics in software development. Imagine making
one change to our source code and having to wait 2 weeks to see if it broke
something? oh! That would be a nightmare! For this, Continuous Integration will
help a team to have immediate and frequent feedback about the status of what
they are building.

Martin Fowler defines Continuous Integration as a software development practice
where members of a team integrate their work frequently, usually each person
integrates at least daily - leading to multiple integrations per day. Each integration
is verified by an automated build (including test) to detect integration errors as
quickly as possible. Many teams find that this approach leads to significantly
reduced integration problems and allows a team to develop cohesive software
more rapidly.

In the next subsections, we are going to present 2 continuous integration tools:
Travis CI and Circle CI and use them with a Crystal example application.

These tools not only will let us build and test our code each time the source has
changed but also deploy the result (if the build was successful) or use automatic
builds, and maybe test against different platforms, to mention a few.

The example application
We are going to use Conway's Game of Life as the example application. More
precisely, we are going to use only the first iterations in Conway's Game of Life
Kata solution using TDD.

Note that we won't be using TDD in the example itself, but we will mimic as if the
example code is the result of the first iterations.

Another important thing to mention is that we are using crystal init to create the
application.

And here's the implementation:

https://www.martinfowler.com/articles/continuousIntegration.html
https://travis-ci.org/
https://circleci.com/
http://codingdojo.org/kata/GameOfLife/
https://martinfowler.com/bliki/TestDrivenDevelopment.html
file:///tmp/calibre_4.19.0_tmp_jkxmb1xc/using_the_compiler#creating-a-crystal-project

Nil

306

src/game_of_life.cr
class Location
 getter x : Int32
 getter y : Int32

 def self.random
 Location.new(Random.rand(10), Random.rand(10))
 end

 def initialize(@x, @y)
 end
end

class World
 @living_cells : Array(Location)

 def self.empty
 new
 end

 def initialize(living_cells = [] of Location)
 @living_cells = living_cells
 end

 def set_living_at(a_location)
 @living_cells << a_location
 end

 def is_empty?
 @living_cells.size == 0
 end
end

And the specs:

spec/game_of_life_spec.cr
require "./spec_helper"

describe "a new world" do
 it "should be empty" do
 world = World.new
 world.is_empty?.should be_true
 end
end

describe "an empty world" do
 it "should not be empty after adding a cell" do
 world = World.empty
 world.set_living_at(Location.random)
 world.is_empty?.should be_false
 end
end

And this is all we need for our continuous integration examples! Let's start!

Continuous Integration step by step
Here's the list of items we want to achieve:

1. Build and run specs using 3 different Crystal's versions:

Nil

307

latest
nightly
0.31.1 (using a Docker image)

2. Install shards packages
3. Install binary dependencies
4. Use a database (for example MySQL)
5. Cache dependencies to make the build run faster

From here choose your next steps:

I want to use Travis CI
I want to use CircleCI

Nil

308

Travis CI
In this section we are going to use Travis CI as our continuous-integration service.
Travis CI is mostly used for building and running tests for projects hosted at
GitHub. It supports different programming languages and for our particular case, it
supports the Crystal language.

Note:If you are new to continuous integration (or you want to refresh the
basic concepts) we may start reading the core concepts guide.

Now let's see some examples!

Build and run specs

Using latest and nightly

A first (and very basic) Travis CI config file could be:

.travis.yml
language: crystal

That's it! With this config file, Travis CI by default will run crystal spec . Now, we
just need to go to Travis CI dashboard to add the GitHub repository.

Let's see another example:

.travis.yml
language: crystal

crystal:
 - latest
 - nightly

script:
 - crystal spec
 - crystal tool format --check

With this configuration, Travis CI will run the tests using both Crystal latest and
 nightly releases on every push to a branch on your Github repository.

Note: When creating a Crystal project using crystal init , Crystal creates a
 .travis.yml file for us.

Using a specific Crystal release

Let's suppose we want to pin a specific Crystal release (maybe we want to make
sure the shard compiles and works with that version) for example Crystal 0.31.1.

Travis CI only provides runners to latest and nightly releases directly and so,
we need to install the requested Crystal release manually. For this we are going to
use Docker.

https://travis-ci.org/
https://docs.travis-ci.com/user/tutorial/#more-than-running-tests
https://docs.travis-ci.com/user/tutorial/#selecting-a-different-programming-language
https://docs.travis-ci.com/user/languages/crystal/
https://docs.travis-ci.com/user/for-beginners/
https://docs.travis-ci.com/user/tutorial/#to-get-started-with-travis-ci
file:///tmp/using_the_compiler#creating-a-crystal-project
https://github.com/crystal-lang/crystal/releases/tag/0.31.1
https://www.docker.com/

Nil

309

First we need to add Docker as a service in .travis.yml , and then we can use
 docker commands in our build steps, like this:

.travis.yml
language: minimal

services:
 - docker

script:
 - docker run -v $PWD:/src -w /src crystallang/crystal:0.31.1 crystal spec

Note: We may read about different (languages)[https://docs.travis-
ci.com/user/languages/] supported by Travis CI, included minimal.

Note: A list with the different official Crystal docker images is available at
DockerHub.

Using latest , nightly and a specific Crystal
release all together!

Supported runners can be combined with Docker-based runners using a Build
Matrix. This will allow us to run tests against latest and nightly and pinned
releases.

Here is the example:

.travis.yml
matrix:
 include:
 - language: crystal
 crystal:
 - latest
 script:
 - crystal spec

 - language: crystal
 crystal:
 - nightly
 script:
 - crystal spec

 - language: bash
 services:
 - docker
 script:
 - docker run -v $PWD:/src -w /src crystallang/crystal:0.31.1 crystal spec

Installing shards packages
In native runners (language: crystal), Travis CI already automatically installs
shards dependencies using shards install . To improve build performance we
may add caching on top of that.

Using Docker

https://docs.travis-ci.com/user/languages/
https://docs.travis-ci.com/user/languages/minimal-and-generic/
https://hub.docker.com/r/crystallang/crystal/tags
https://hub.docker.com/r/crystallang/crystal
https://docs.travis-ci.com/user/customizing-the-build#build-matrix

Nil

310

In a Docker-based runner we need to run shards install explicitly, like this:

.travis.yml
language: bash

services:
 - docker

script:
 - docker run -v $PWD:/src -w /src crystallang/crystal:0.31.1 shards install
 - docker run -v $PWD:/src -w /src crystallang/crystal:0.31.1 crystal spec

Note: Since the shards will be installed in ./lib/ folder, it will be preserved for
the second docker run command.

Installing binary dependencies
Our application or maybe some shards may required libraries and packages. This
binary dependencies may be installed using different methods. Here we are going
to show an example using the Apt command (since the Docker image we are
using is based on Ubuntu)

Here is a first example installing the libsqlite3 development package using the
APT addon:

.travis.yml
language: crystal
crystal:
 - latest

before_install:
 - sudo apt-get -y install libsqlite3-dev

addons:
 apt:
 update: true

script:
 - crystal spec

Using Docker

We are going to build a new docker image based on crystallang/crystal, and in
this new image we will be installing the binary dependencies.

To accomplish this we are going to use a Dockerfile:

Dockerfile
FROM crystallang/crystal:latest

install binary dependencies:
RUN apt-get update && apt-get install -y libsqlite3-dev

And here is the Travis CI configuration file:

https://help.ubuntu.com/lts/serverguide/apt.html
https://docs.travis-ci.com/user/installing-dependencies/#installing-packages-with-the-apt-addon
https://hub.docker.com/r/crystallang/crystal/
https://docs.docker.com/engine/reference/builder/

Nil

311

.travis.yml
language: bash

services:
 - docker

before_install:
 # build image using Dockerfile:
 - docker build -t testing .

script:
 # run specs in the container
 - docker run -v $PWD:/src -w /src testing crystal spec

Note: Dockerfile arguments can be used to use the same Dockerfile for latest,
nightly or a specific version.

Using services
Travis CI may start services as requested.

For example, we can start a MySQL database service by adding a services:
section to our .travis.yml :

.travis.yml
language: crystal
crystal:
 - latest

services:
 - mysql

script:
 - crystal spec

Here is the new test file for testing against the database:

spec/simple_db_spec.cr
require "./spec_helper"
require "mysql"

it "connects to the database" do
 DB.connect ENV["DATABASE_URL"] do |cnn|
 cnn.query_one("SELECT 'foo'", as: String).should eq "foo"
 end
end

When pushing this changes Travis CI will report the following error: Unknown
database 'test' (Exception) , showing that we need to configure the MySQL service
and also setup the database:

https://docs.travis-ci.com/user/database-setup/
https://docs.travis-ci.com/user/database-setup/#mysql

Nil

312

.travis.yml
language: crystal
crystal:
 - latest

env:
 global:
 - DATABASE_NAME=test
 - DATABASE_URL=mysql://root@localhost/$DATABASE_NAME

services:
 - mysql

before_install:
 - mysql -e "CREATE DATABASE IF NOT EXISTS $DATABASE_NAME;"
 - mysql -u root --password="" $DATABASE_NAME < db/schema.sql

script:
 - crystal spec

We are using a schema.sql script to create a more readable .travis.yml . The file
 ./db/schema.sql looks like this:

-- schema.sql
CREATE TABLE ... etc ...

Pushing these changes will trigger Travis CI and the build should be successful!

Caching
If we read Travis CI job log, we will find that every time the job runs, Travis CI
needs to fetch the libraries needed to run the application:

Fetching https://github.com/crystal-lang/crystal-mysql.git
Fetching https://github.com/crystal-lang/crystal-db.git

This takes time and, on the other hand, these libraries might not change as often
as our application, so it looks like we may cache them and save time.

Travis CI uses caching to improve some parts of the building path. Here is the
new configuration file with cache enabled:

.travis.yml
language: crystal
crystal:
 - latest

cache: shards

script:
 - crystal spec

Let's push these changes. Travis CI will run, and it will install dependencies, but
then it will cache the shards cache folder which, usually, is ~/.cache/shards . The
following runs will use the cached dependencies.

https://andidittrich.de/2017/06/travisci-setup-mysql-tablesdata-before-running-tests.html
https://docs.travis-ci.com/user/caching/

Nil

313

Nil

314

CircleCI
In this section we are going to use CircleCI as our continuous-integration service.
In a few words CircleCI automates your software builds, tests, and deployments.
It supports different programming languages and for our particular case, it
supports the Crystal language.

In this section we are going to present some configuration examples to see how
CircleCI implements some continuous integration concepts.

CircleCI orbs
Before showing some examples, it’s worth mentioning CircleCI orbs. As defined in
the official docs:

Orbs define reusable commands, executors, and jobs so that commonly
used pieces of configuration can be condensed into a single line of code.

In our case, we are going to use Crystal’s Orb

Build and run specs

Simple example using latest

Let’s start with a simple example. We are going to run the tests using latest
Crystal release:

.circleci/config.yml
workflows:
 version: 2
 build:
 jobs:
 - crystal/test

orbs:
 crystal: manastech/crystal@1.0
version: 2.1

Yeah! That was simple! With Orbs an abstraction layer is built so that the
configuration file is more readable and intuitive.

In case we are wondering what the job crystal/test does, we always may see the
source code.

Using nightly

Using nightly Crystal release is as easy as:

https://circleci.com/
https://circleci.com/docs/2.0/about-circleci/#section=welcome
https://circleci.com/docs/2.0/demo-apps/#section=welcome
https://circleci.com/docs/2.0/language-crystal/
https://circleci.com/docs/2.0/concepts/
https://circleci.com/orbs/
https://circleci.com/orbs/registry/orb/manastech/crystal
https://circleci.com/orbs/registry/orb/manastech/crystal#jobs-test

Nil

315

.circleci/config.yml
workflows:
 version: 2
 build:
 jobs:
 - crystal/test:
 name: test-on-nightly
 executor:
 name: crystal/default
 tag: nightly

orbs:
 crystal: manastech/crystal@1.0
version: 2.1

Using a specific Crystal release

.circleci/config.yml
workflows:
 version: 2
 build:
 jobs:
 - crystal/test:
 name: test-on-0.30
 executor:
 name: crystal/default
 tag: 0.30.0

orbs:
 crystal: manastech/crystal@1.0
version: 2.1

Installing shards packages
You need not worry about it since the crystal/test job runs the crystal/shard-
install orb command.

Installing binary dependencies
Our application or maybe some shards may require libraries and packages. This
binary dependencies may be installed using the Apt command.

Here is an example installing the libsqlite3 development package:

.circleci/config.yml
workflows:
 version: 2
 build:
 jobs:
 - crystal/test:
 pre-steps:
 - run: apt-get update && apt-get install -y libsqlite3-dev

orbs:
 crystal: manastech/crystal@1.0
version: 2.1

https://help.ubuntu.com/lts/serverguide/apt.html

Nil

316

Using services
Now, let’s run specs using an external service (for example MySQL):

Note: The explicit checkout in the pre-steps is to have the test-data/setup.sql
file available.

Caching
Caching is enabled by default when using the job crystal/test , because
internally it uses the command with-shards-cache

.circleci/config.yml
executors:
 crystal_mysql:
 docker:
 - image: 'crystallang/crystal:latest'
 environment:
 DATABASE_URL: 'mysql://root@localhost/db'
 - image: 'mysql:5.7'
 environment:
 MYSQL_DATABASE: db
 MYSQL_ALLOW_EMPTY_PASSWORD: 'yes'

workflows:
 version: 2
 build:
 jobs:
 - crystal/test:
 executor: crystal_mysql
 pre-steps:
 - run:
 name: Waiting for service to start (check dockerize)
 command: sleep 1m
 - checkout
 - run:
 name: Install MySQL CLI; Import dummy data
 command: |
 apt-get update && apt-get install -y mysql-client
 mysql -h 127.0.0.1 -u root --password="" db < test-data/setup.

orbs:
 crystal: manastech/crystal@1.0
version: 2.1

https://circleci.com/orbs/registry/orb/manastech/crystal#commands-with-shards-cache

	Introduction
	Getting started
	An HTTP Server
	A Command Line Application

	Using the compiler
	The shards command
	Syntax and semantics
	Comments
	Literals
	Nil
	Bool
	Integers
	Floats
	Char
	String
	Symbol
	Array
	Hash
	Range
	Regex
	Tuple
	NamedTuple
	Proc
	Command

	Assignment
	Local variables
	Control expressions
	Truthy and falsey values
	if
	unless
	case
	while
	until
	&&
	||

	Requiring files
	Types and methods
	Everything is an object
	The Program
	Classes and methods
	Modules
	Generics
	Structs
	Constants
	Enums
	Blocks and Procs
	alias

	Exception handling
	Type grammar
	Type reflection
	is_a?
	nil?
	responds_to?
	as
	as?
	typeof

	Macros
	Macro methods
	Hooks
	Fresh variables

	Annotations
	Built-in annotations

	Low-level primitives
	pointerof
	sizeof
	instance_sizeof
	offsetof
	Uninitialized variable declaration

	Compile-time flags
	Cross-compilation

	C bindings
	lib
	fun
	struct
	union
	enum
	Variables
	Constants
	type
	alias
	Callbacks

	Unsafe code

	Conventions
	Coding style
	Documenting code

	Database
	Connection
	Connection pool
	Transactions

	Guides
	Performance
	Concurrency
	Testing
	Writing Shards
	Hosting on GitHub
	Hosting on GitLab

	Continuous Integration
	Using Travis CI
	Using CircleCI

